Economics 130. Lecture 4 Simple Linear Regression Continued

Size: px
Start display at page:

Download "Economics 130. Lecture 4 Simple Linear Regression Continued"

Transcription

1 Economcs 130 Lecture 4 Contnued

2 Readngs for Week 4 Text, Chapter and 3.

3 We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do we create the model relatng the data? How do we relate data to on another? How do we evaluate these relatonshps?

4 Tonght we wll reprse last week s lecture. We wll then derve the estmates b 1 and b. We wll dscuss what t means that OLS wth certan assumptons s BLUE. We wll dscuss how evaluate our estmates. We wll do a problem.

5 Last week we: Developed a smple lnear regresson model Dscussed the error term Explaned the dfferences between parameters and estmates Presented OLS for obtanng estmates Introduced mnmzng the resduals Introduced R

6 Remember OLS chooses b 1 and b to mnmze the SSE, sum of squared resduals. The solutons: b ( Y Y)( X X ) = ( X X ) b 1= Y b X

7 Frst Dervaton (b 1 ) ê = Y - Ŷ (the resdual) ê = Y b 1 b *X ê ^ = (Y - b 1 - b *X)^ ê ^/ b 1 = *(Y - b 1 - b *X)*-1 0 = *(Y - b 1 - b *X)*-1 0 = (Y - b 1 - b *X) 0 = Y - b 1 - b *X b 1 = Y - b *X b 1 = Y - b *X n b 1 = Y - b *X b 1 = Y - b * X

8 Now let s do b : ê ^ = (Y - b 1 - b *X)^ ê ^/ b = *(Y - b 1 - b *X)*-X 0 = *(Y - b 1 - b *X)*-X 0 = (Y - b 1 - b *X)*X 0 = (YX - b 1 *X - b *X^) 0 = YX - b 1 *X - b *X^

9 YX =b 1 *X + b *X^ YX =b 1 X + b X^ YX =( Y - b X )*X + b X^ YX =[1/nY-b *(1/n)X)]*X + b X^ YX =1/nYX -b *(1/n)X^ + b *X^

10 b = YX - n Y * X X^ - n* X ^ = XY - n Y * X +n Y * X - n Y * X X^ - n* X ^+ n* X ^ - n* X ^

11 b = YX - Y *X - Y* X + n Y * X X^ - X* X + n* X ^ b = (YX - Y *X - Y* X + Y * X ) (X^ - X* X + X ^) b = (Y - Y )*(X - X ) (X - X )^

12 Now we turn to BLUE: Best Lnear Unbased Estmators

13 Why mght OLS be a good estmator? Desrable propertes of an estmator: 1) Unbased,.e., expected value of the estmator equals the true parameter value that we want to estmate. ) Precse,.e., the varance of the estmator, s small. Turns out that least squares estmator s: unbased lnear n the y s among lnear unbased estmators, the best has smallest varance. I.e., OLS (ordnary least squares) estmator s BLUE. Ths s the Gauss Markov theorem.

14 Gauss-Markov Theorem states that OLS estmates of the regresson coeffcents are (1) unbased, () consstent and (3) most effcent. Assumng our 6 assumptons from last week are true.

15 Sx Crtcal Assumptons Lnearty Some observed Xs are dfferent Condtonal mean of e, gven X, = 0 Xs are gven, and can be treated as nonrandom All e s are equally dstrbuted wth the same condtonal varance (σ ) [Homoskedastcty (equal scatter] e s are ndependently dstrbuted; cov (e, e j ) = 0

16 To prove unbased-ness we need to remember our assumptons: Four Assumptons Lnearty Some observed Xs are dfferent Condtonal mean of e, gven X, = 0 Xs are gven, and can be treated as nonrandom

17 Defnton of unbased: E(b) = β Begn wth Please note: b ( x x)( y y) ( x x) = 1) The sum of a varable around ts average s always zero That s: ( x) = 0 x ) For convenence, we wll defne w as w x x ( x x) =

18 Usng these notes, we can rewrte b as follows: ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = = = = = w y y x x x x x x y x x x x x x y y x x x x y y x x b

19 Snce y = β 1 + β x +e and we can smplfy our equaton: b = = w β + β x + e ( ) 1 = wβ + β wx + we = β + w y 1 we

20 We can fnd the expected value of b usng the fact that the expected value of a sum s the sum of the expected values: Eb ( ) = Eb ( + we) = E(β + we+ we we ) 1 1 N N = β Snce E(e ) = 0. = E(β ) + E( we ) + E( w e ) E( w e ) 1 1 = E(β ) + E( we ) = β + we( e) N N

21 Usng our assumpton that the condtonal mean (expected value) of the error terms = 0: E( b ) = β Therefore, OLS estmates are unbased.

22 What about most effcent? Effcency s defned the by sze of the varance. If there are two unbased estmators, the one wth the smallest varance s the most effcent.

23 What about the varance of our estmates? All e s are equally dstrbuted wth the same condtonal varance (σ ) [Homoskedastcty (equal scatter] e s are ndependently dstrbuted; cov (e, e j ) = 0

24 Remember: b = β +we Therefore: var( b ) = E β + we β = E we = E w e + ww ee = w E e + = = σ ( x x) j j j ( ) ( ) ww E ee j j j σ w

25 If we postulate another dfferent estmate, b * whch dffers from b by a constant, w +c ( ) * var( b) = var β + w + c e ( w c ) var ( e ) = + ( w c ) = σ + = σ w + σ ( b ) ( b ) = var + σ var c c

26 What about the varance of our estmates? All e s are equally dstrbuted wth the same condtonal varance (σ ) [Homoskedastcty (equal scatter] e s are ndependently dstrbuted; cov (e, e j ) = 0 Then, among all unbased, lnear combnatons of Ys, our estmates b 1 and b have the lowest varance = most effcent.

27 As for consstency, t s the property that estmates converge to true values as the sample sze s ncreased ndefntely. Smlar to unbased-ness, f our frst four assumptons hold, (especally #4, whch mples X s and e s are uncorrelated), then OLS estmators are consstent.

28 Therefore, OLS estmators are BLUE. What f the assumptons are not true? To be contnued at a later date...

29 Now we combne statstcal analyss wth OLS estmates.

30 s Statstcal Aspects of Regresson b 1 and b are only estmates of β 1 and β Key queston: How accurate are these estmates? Statstcal procedures allow us to formally address ths queston.

31 s The normal dstrbuton of b, the least squares estmator of β, s b N β ~, ( x ) x A standardzed normal random varable s obtaned from b by subtractng ts mean and dvdng by ts standard devaton: Z = σ ( x x) σ b β ~ N ( 0,1)

32 s We know that: ( ) = P Z Substtutng: P 1.96 σ b β 1.96 = ( x x) 0.95 Rearrangng: P 1.96 b σ = ( ) x x β b σ ( x x) 0. 95

33 s The two end-ponts b ±. provde an nterval estmator. ( x ) 1 σ x 96 In repeated samplng 95% of the ntervals constructed ths way wll contan the true value of the parameter β. Ths easy dervaton of an nterval estmator s based on the assumpton SR6 and that we know the varance of the error term σ.

34 s Replacng σ wth t: σˆ creates a random varable t = σˆ σ b β β β = = ~ ( N ) ( x x) vâr( b ) se( b ) b b t ( ) The rato t = b β se b has a t-dstrbuton wth (N ) degrees of freedom, whch we denote as: t t ~ ( N )

35 s In general we can say, f assumptons SR1-SR6 hold n the smple lnear regresson model, then bk β t = k k se ( ) for 1, ( ) ~ t = N b The t-dstrbuton s a bell shaped curve centered at zero It looks lke the standard normal dstrbuton, except t s more spread out, wth a larger varance and thcker tals The shape of the t-dstrbuton s controlled by a sngle parameter called the degrees of freedom, often abbrevated as df k

36 A Confdence Interval for β k Uncertanty about accuracy of the estmate b can be summarsed n a confdence nterval 95% confdence nterval for β s gven by: b β k k P t = α ( ) c tc 1 se bk P b t se b β t + t se b = 1 [ ( ) ( )] α k c k k c c k t c s a crtcal value from the Student t-dstrbuton se b = standard error of s a measure of the accuracy o s b = SSE ( N ) ( X X )

37 A Confdence Interval for β (cont.) t c controls the confdence level (e.g. t b s bgger for 95% confdence than 90%). se vares drectly wth SSE (.e. how varable the resduals are) se vares nversely wth N, the number of data ponts se vares nversely wth (X X ) whch s related to the varance/varablty of X.

38 Intuton of Confdence Interval: Useful (but formally ncorrect) ntuton: There s a 95% probablty that the true value of β les n the confdence nterval. Correct ntuton: If you repeatedly use the above formula for calculatng a confdence nterval, 95% of the ntervals you construct wll contan the true value for β. Can choose any level of confdence you want (e.g. 90%, 99%).

39 EXAMPLE FROM TEXT: b = 10.1, N = 40 df = 38 var(b ) = 4.38 Create a 95% confdence nterval (α =.05) Crtcal value of t =.04 se = (4.38) ½ =.09 A 95% confdence nterval estmate for β : b ( ) = 10.1±.04(.09) [ 5.97,14.45] ± tcse b = When the procedure we used s appled to many random samples of data from the same populaton, then 95% of all the nterval estmates constructed usng ths procedure wll contan the true parameter!!

40 The most common method of evaluatng estmates s through hypothess testng usng a test statstc usng the t dstrbuton.

41 Hypothess Testng Test whether β=0 (.e. whether X has any explanatory power) One way of dong t: look at confdence nterval, check whether t contans zero. If no, then you are confdent β 0. Alternatve (equvalent) way s to use t-statstc (often called t-rato ) bk c t = ~ t( N ) se( b ) f c = 0, then k Bg values for t ndcate β 0. Small values for t ndcate β=0. t = b se

42 Hypothess Testng (cont.) Q: What do we mean by bg and small? A: Look at p-value. If P-value.05 then t s bg and conclude β 0. If P-value >.05 then t s small and conclude β=0. Useful (but formally ncorrect) ntuton: P-value measures the probablty that β = = 5% = level of sgnfcance Other levels of sgnfcance (e.g. 1% or 10%) occasonally used

43 The Test statstc for H 0 : β =c, s: t 0 = (β -c)/se ~ t(df=n-) Rejecton regons exactly the same as before (dependng whether you are dong a one-sded or two-sded test). p-values exactly the same as before (dependng upon t 0 and whether you are dong a one-sded or two-sded test).

44 Components of Hypothess Tests 1. A null hypothess, H 0. An alternatve hypothess, H 1 3. A test statstc 4. A rejecton regon 5. A concluson

45 1. For our purposes, the null hypothess s H 0 = 0. The alternatve hypothess s H Let α =.05. The crtcal values for ths two-tal test are the.5-percentle t (.05,38 ) =.04 and the 97.5-percentle t (.975,38 ) =.04. We REJECT the null hypothess f the calculated value of t.04 or f t.04. If.04 < t <.04, we DO NOT REJECT the Null.

46 A coeffcent s sad to be STATISTICALLY SIGNIFICANT or SIGNIFICANTLY DIFFERENT FROM ZERO at level α (usually, 1%, 5% or 10%) f you reject the null hypothess that the coeffcent s ZERO (generally wth a two-sded test). Ths s what reported t-ratos test.

47 p-value rule: Reject the null hypothess when the p-value s less than, or equal to, the level of sgnfcance α. That s, f p α then reject H 0. If p > α then do not reject H 0

48 The null hypothess s H 0 : β = 0. The alternatve hypothess s H 1 : β 0 Recall t statstc for b : t = 4.88 p-value for H 0 = p P t( 38) P t( 38) = =

49 Returnng to the housng problem: PRICE = SQFT (1.404) (7.41)

50 Next Week More evaluatng results A few words on Lnear Algebra Begn multple regresson models Multple R and F test

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Chapter 5: Hypothesis Tests, Confidence Intervals & Gauss-Markov Result

Chapter 5: Hypothesis Tests, Confidence Intervals & Gauss-Markov Result Chapter 5: Hypothess Tests, Confdence Intervals & Gauss-Markov Result 1-1 Outlne 1. The standard error of 2. Hypothess tests concernng β 1 3. Confdence ntervals for β 1 4. Regresson when X s bnary 5. Heteroskedastcty

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

Scatter Plot x

Scatter Plot x Construct a scatter plot usng excel for the gven data. Determne whether there s a postve lnear correlaton, negatve lnear correlaton, or no lnear correlaton. Complete the table and fnd the correlaton coeffcent

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Correlation and Regression

Correlation and Regression Correlaton and Regresson otes prepared by Pamela Peterson Drake Index Basc terms and concepts... Smple regresson...5 Multple Regresson...3 Regresson termnology...0 Regresson formulas... Basc terms and

More information

Problem of Estimation. Ordinary Least Squares (OLS) Ordinary Least Squares Method. Basic Econometrics in Transportation. Bivariate Regression Analysis

Problem of Estimation. Ordinary Least Squares (OLS) Ordinary Least Squares Method. Basic Econometrics in Transportation. Bivariate Regression Analysis 1/60 Problem of Estmaton Basc Econometrcs n Transportaton Bvarate Regresson Analyss Amr Samm Cvl Engneerng Department Sharf Unversty of Technology Ordnary Least Squares (OLS) Maxmum Lkelhood (ML) Generally,

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

January Examinations 2015

January Examinations 2015 24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Lecture 3 Specification

Lecture 3 Specification Lecture 3 Specfcaton 1 OLS Estmaton - Assumptons CLM Assumptons (A1) DGP: y = X + s correctly specfed. (A) E[ X] = 0 (A3) Var[ X] = σ I T (A4) X has full column rank rank(x)=k-, where T k. Q: What happens

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10) I. Defnton and Problems Econ7 Appled Econometrcs Topc 9: Heteroskedastcty (Studenmund, Chapter ) We now relax another classcal assumpton. Ths s a problem that arses often wth cross sectons of ndvduals,

More information

17 - LINEAR REGRESSION II

17 - LINEAR REGRESSION II Topc 7 Lnear Regresson II 7- Topc 7 - LINEAR REGRESSION II Testng and Estmaton Inferences about β Recall that we estmate Yˆ ˆ β + ˆ βx. 0 μ Y X x β0 + βx usng To estmate σ σ squared error Y X x ε s ε we

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

CHAPTER 6 GOODNESS OF FIT AND CONTINGENCY TABLE PREPARED BY: DR SITI ZANARIAH SATARI & FARAHANIM MISNI

CHAPTER 6 GOODNESS OF FIT AND CONTINGENCY TABLE PREPARED BY: DR SITI ZANARIAH SATARI & FARAHANIM MISNI CHAPTER 6 GOODNESS OF FIT AND CONTINGENCY TABLE Expected Outcomes Able to test the goodness of ft for categorcal data. Able to test whether the categorcal data ft to the certan dstrbuton such as Bnomal,

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero:

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero: 1 INFERENCE FOR CONTRASTS (Chapter 4 Recall: A contrast s a lnear combnaton of effects wth coeffcents summng to zero: " where " = 0. Specfc types of contrasts of nterest nclude: Dfferences n effects Dfferences

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 014-015 MTH35/MH3510 Regresson Analyss December 014 TIME ALLOWED: HOURS INSTRUCTIONS TO CANDIDATES 1. Ths examnaton paper contans FOUR (4) questons

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II PubH 7405: REGRESSION ANALSIS SLR: INFERENCES, Part II We cover te topc of nference n two sessons; te frst sesson focused on nferences concernng te slope and te ntercept; ts s a contnuaton on estmatng

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Topic 7: Analysis of Variance

Topic 7: Analysis of Variance Topc 7: Analyss of Varance Outlne Parttonng sums of squares Breakdown the degrees of freedom Expected mean squares (EMS) F test ANOVA table General lnear test Pearson Correlaton / R 2 Analyss of Varance

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information