Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2


 Deborah Spencer
 3 years ago
 Views:
Transcription
1 Physcs 607 Exam 1 Please be wellorganzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on the blan sheets provded, wrtng your name clearly. (You may eep ths exam.) The varables have ther usual meanngs: E = energy, S = entropy, V = volume, N = number of partcles, T = temperature, P = pressure, µ = chemcal potental, B = appled magnetc feld, C V = heat capacty at constant volume, C P = heat capacty at constant pressure, F = Helmholtz free energy, G = Gbbs free energy, = Boltzmann constant, h = Planc constant. Also, represents an average. e x2 dx = π, x 2 e x2 dx = 1 2 Γ 1 2 = π, Γ 1 ( ) = 1, Γ( z +1) = zγ( z) π, x n e x2 dx = Γ n + 1, ln N! N ln N N, e x = 1+ x + x E = TS PV + µn, E = T 2 ln Z, F = T ln Z, T x H x j = δ j T, p = H q, q = H p
2 1. In the Ensten model, a sold conssts of N atoms, each vbratng wth an angular frequency ω. They are regarded as dstngushable, so that the partton functon s Z = z N, where z s gven by the sum over the states n of a sngle oscllator wth energes ε n = n + 1 2!ω. (a) (5) Obtan z n a smple form, usng 1+ x + x = ( 1 x) 1, and then the partton functon Z. (Is the functon you are summng wthn the radus of convergence?) (b) (5) Calculate the thermodynamc energy E n a smple form. (c) (5) Calculate the specfc heat at constant volume, C V, n a smple form. (d) (5) Assumng that ω does not depend on the volume V, calculate the pressure and the heat capacty at constant pressure, C P. (e) (5) Show that E = NT + O!ω T 2 for T >>!ω (wth no frstorder correcton n!ω / T ).
3 2. (a) (6) Wth V and T treated as the ndependent varables (and N held fxed) show that ds = S V dv + C V T dt. (b) (6) Use the expresson for df (where F = E TS ) to obtan the Maxwell relaton nvolvng S P V and T. (c) (6) Usng the fundamental expresson for de n terms of ds and dv, show that de = T P T P V dv + C V dt. (d) (7) For a van der Waals gas, wth the equaton of state P + a v 2 V Nb E V T n terms of a and V. T T V ( ) = NT, v = V N, obtan
4 3. Suppose that the entropy of an deal quantum gas s gven by S = n ln n ± ( 1 n )ln 1 n ( ) where n s the average number of partcles n state. Here the upper sgn holds for fermons and the lower sgn for bosons. Also suppose that the partcles n all the other states act as a reservor for the specfc state, so that and n ε are both fxed constants, whch can be treated wth Lagrange multplers γ and β respectvely. (a) (5) Demonstrate wth clear arguments that the entropy per partcle goes to zero for fermons n the ground state. (b) (5) Demonstrate wth clear arguments that the entropy per partcle goes to zero for bosons n the ground state. [Show that S / N 0 as N n the ground state.] (c) (5) By maxmzng the entropy, subject to the constrants above, obtan the equlbrum value of n for fermons n terms of β, ε, and γ. n (d) (5) By maxmzng the entropy, subject to the constrants above, obtan the equlbrum value of n for bosons n terms of β, ε, and γ. Do these results mae sense?
5 4. Consder the average of the quantty dg over a tme τ, wth τ and dt G q p. The q are a set of coordnates, and the p are the correspondng momenta. We assume a classcal system n whch the magntude of G s bounded. (a) (5) Show that u p = q F where u s the velocty and F s the force correspondng to the coordnate q. (Here, and n all cases where you are gven the answer, your arguments must be clear, complete, and convncng.) Use ths result n obtanng the results of parts (b) and (c) below. (b) (5) For a planet revolvng around a star (subject to only the Newtonan gravtatonal force of the star), obtan the relaton between the average netc energy K planet and the average potental energy U planet. The moton s nonrelatvstc but the orbt can be hghly ellptcal. (c) (5) Consder a star revolvng at a dstance r around the center of a dar matter halo wth a sphercally symmetrc matter densty ρ r ( ). The matter enclosed n the sphercal volume of radus r s r ( ) = dr '4πr' 2 ρ ( r' ) M r. 0 The observed average velocty of the stars around a gven halo s found to be equal to a constant v 0 wth respect to r, out to large dstances from the center. Determne M ( r) as a functon of r (nvolvng v 0 ). In ths part you can assume crcular orbts for smplcty. (d) (5) Now let us swtch to a dfferent applcaton of the vral theorem: Consder N partcles that are confned to a volume V by a pressure P. We frst wsh to obtan q F = q F ' + 3PV (1) where the forces F ' are due to nteractons among the partcles (and represents an average over partcles as well as a tme average). Let F!" walls be the total force on the partcles due to ther collsons wth the walls enclosng the volume. Start by assumng that N r! F "! walls = P r! ds! where S s the surface enclosng V and r! s the poston vector of a partcle. Show that ths relaton leads to the equaton labeled (1) above (gvng a clear mathematcal argument). S [next page for parts (e) and (f)]
6 (e) (5) Now suppose that F ' = U q and that the potental energy U s a homogeneous functon of order n of all the partcle coordnates: For nonrelatvstc partcles, show that U ( λq 1,λq 2,... ) = λ n U ( q 1,q 2,... ). K = constant U + dfferent constant PV whle at the same tme obtanng the constants. Here K s the mean value of the total netc energy and U s the mean value of the total potental energy. (f) (5) Fnally, consder an deal gas (wth F ' = 0 ). Usng the equpartton theorem, plus Hamlton s equatons, obtan the equaton of state relatng P to N, V, and T.
CHAPTER 14 GENERAL PERTURBATION THEORY
CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves
More informationPhysics 181. Particle Systems
Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system
More informationThermodynamics and statistical mechanics in materials modelling II
Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1
More informationand Statistical Mechanics Material Properties
Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15855, JAPA Phone/Fax +81357343915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~ktlab/ Only for
More informationReview of Classical Thermodynamics
Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,
More informationPHY688, Statistical Mechanics
Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +
More informationUniversity of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015
Lecture 2. 1/07/151/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want
More informationSTATISTICAL MECHANICS
STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgdbody rotaton and elastc / sound waves Use smplfyng assumptons KE of
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationCelestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestialmechanics  J. Hedberg
PHY 454  celestalmechancs  J. Hedberg  207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The
More informationELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM
ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look
More informationPoisson brackets and canonical transformations
rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order
More information12. The HamiltonJacobi Equation Michael Fowler
1. The HamltonJacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and
More informationIntroduction to Statistical Methods
Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc
More informationLecture. Polymer Thermodynamics 0331 L Chemical Potential
Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More informationLecture 20: Noether s Theorem
Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external
More informationπ e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m
Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The bruteforce method s to ntegrate by parts but there s a nce trck. The followng ntegrals
More informationRobert Eisberg Second edition CH 09 Multielectron atoms ground states and xray excitations
Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and xray exctatons 901 By gong through the procedure ndcated n the text, develop the tmendependent Schroednger equaton
More informationThermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak
Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton
More information8.592J: Solutions for Assignment 7 Spring 2005
8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1
More informationProblem Points Score Total 100
Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.
More informationThermodynamics General
Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,
More informationPHYS 705: Classical Mechanics. Calculus of Variations II
1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary
More informationLecture 4. Macrostates and Microstates (Ch. 2 )
Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.
More informationMechanics Physics 151
Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed multpartcle systems! Internal and external forces! Laws of acton and
More information...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)
If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spnup
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationTP A SOLUTION. For an ideal monatomic gas U=3/2nRT, Since the process is at constant pressure Q = C. giving ) =1000/(5/2*8.31*10)
T A SOLUTION For an deal monatomc gas U/nRT, Snce the process s at constant pressure Q C pn T gvng a: n Q /( 5 / R T ) /(5/*8.*) C V / R and C / R + R 5 / R. U U / nr T (/ ) R T ( Q / 5 / R T ) Q / 5 Q
More informationArmy Ants Tunneling for Classical Simulations
Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons
More informationTHE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions
THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George
More informationLecture 7: Boltzmann distribution & Thermodynamics of mixing
Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters
More informationSTATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1
CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,
More informationSUPPLEMENTARY INFORMATION
do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of
More informationQuantum Mechanics I Problem set No.1
Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t
More informationMechanics Physics 151
Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate com
More informationSpring 2002 Lecture #13
4450 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallelas Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the mdterm
More informationχ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body
Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown
More informationModule 1 : The equation of continuity. Lecture 1: Equation of Continuity
1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 16 () () () (v) (v) Overall Mass Balance Momentum
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationIn this section is given an overview of the common elasticity models.
Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp
More informationClassical Mechanics ( Particles and Biparticles )
Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles
More informationcoordinates. Then, the position vectors are described by
Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,
More informationr i r j 3. (2) Gm j m i r i (r i r j ) r i r j 3. (3)
Nbody problem There s a lot of nterestng physcs related to the nteractons of a few bodes, but there are also many systems that can be wellapproxmated by a large number of bodes that nteract exclusvely
More informationModule 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationPhysics 114 Exam 2 Fall 2014 Solutions. Name:
Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,
More informationOpen Systems: Chemical Potential and Partial Molar Quantities Chemical Potential
Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:
More informationMEASUREMENT OF MOMENT OF INERTIA
1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us
More informationA particle in a state of uniform motion remain in that state of motion unless acted upon by external force.
The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationCanonical transformations
Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,
More informationPhysics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.
Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 31 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 34
More informationMathematical Preparations
1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the
More informationMath1110 (Spring 2009) Prelim 3  Solutions
Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3  Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name
More informationLagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013
Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned
More information10. Canonical Transformations Michael Fowler
10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationFrequency dependence of the permittivity
Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationImplicit Integration Henyey Method
Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the RungeKutta method one employs an teratve mplct technque. Ths s because the structure
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space
More informationEN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics
N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.
More information3. Be able to derive the chemical equilibrium constants from statistical mechanics.
Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be
More informationMechanics Physics 151
Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal endpont constrants δ t ( )
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationThermodynamics and Kinetics of Solids 33. III. Statistical Thermodynamics. Â N i = N (5.3) N i. i =0. Â e i = E (5.4) has a maximum.
hermodynamcs and Knetcs of Solds 33 III. Statstcal hermodynamcs 5. Statstcal reatment of hermodynamcs 5.1. Statstcs and Phenomenologcal hermodynamcs. Calculaton of the energetc state of each atomc or molecular
More informationLecture 14: Forces and Stresses
The Nuts and Bolts of FrstPrncples Smulaton Lecture 14: Forces and Stresses Durham, 6th13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal
More informationQuantum Statistical Mechanics
Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N
More informationSpinrotation coupling of the angularly accelerated rigid body
Spnrotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 Emal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s
More informationModeling of Dynamic Systems
Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how
More informationRate of Absorption and Stimulated Emission
MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld
More informationPHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions
PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.
More informationNote on the Electron EDM
Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The wellknown relatvstc nteracton of the electron
More informationECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals
ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty WgnerEcart Theorem Selecton Rule Dee Dagram Expermentally determned energy
More informationClassical Field Theory
Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to
More informationLagrangian Field Theory
Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More information1 What is a conservation law?
MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2016 2017, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,
More informationNMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy
More informationThermodynamics Second Law Entropy
Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the MaxwellBoltzmann dstrbuton (dstrbuton of speeds) the Second Law of
More informationThe Feynman path integral
The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space
More informationPerfect Fluid Cosmological Model in the Frame Work Lyra s Manifold
Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra
More informationSupporting Information
Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the elementwse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to
More informationAppendix II Summary of Important Equations
W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons
More informationCHEMICAL REACTIONS AND DIFFUSION
CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Nonequlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes
More informationEPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski
EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on
More information(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate
Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1
More informationStatistical mechanics handout 4
Statstcal mechancs handout 4 Explan dfference between phase space and an. Ensembles As dscussed n handout three atoms n any physcal system can adopt any one of a large number of mcorstates. For a quantum
More informationNAME and Section No. it is found that 0.6 mol of O
NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd
More informationarxiv:hepth/ v1 27 Jan 2003
KOBETH Stablty of Neutral Ferm Balls wth MultFlavor Fermons T.Yoshda Department of Physcs, Tokyo Unversty, Hongo 7, BunkyoKu, Tokyo , Japan K.Ogure arxv:hepth/6v 7 Jan Department of Physcs, Kobe
More informationMass Transfer Processes
Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.
More information1. Review of Mechanics Newton s Laws
. Revew of Mechancs.. Newton s Laws Moton of partcles. Let the poston of the partcle be gven by r. We can always express ths n Cartesan coordnates: r = xˆx + yŷ + zẑ, () where we wll always use ˆ (crcumflex)
More informationPhysics 114 Exam 3 Spring Name:
Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More information