CIE4801 Transportation and spatial modelling Trip distribution

Size: px
Start display at page:

Download "CIE4801 Transportation and spatial modelling Trip distribution"

Transcription

1 CIE4801 ransportaton and spatal modellng rp dstrbuton Rob van Nes, ransport & Plannng 17/4/13 Delft Unversty of echnology Challenge the future

2 Content What s t about hree methods Wth specal attenton for the frst Specal ssues 2

3 1. rp dstrbuton: what s t about 3

4 Introducton to trp dstrbuton Zonal data rp producton / rp attracton rp frequency choce ransport networks rp dstrbuton Destnaton choce ravel resstances Modal splt Mode choce Perod of day me choce Assgnment Route choce ravel tmes network loads etc. 4

5 What do we want to know? 5 5

6 Introducton to trp dstrbuton Gven: Productons and attractons for each zone (.e. departures and arrvals) Determne: he number of trps from each zone to all other zones o: zone 1 zone total producton From: zone 1 zone total attracton 6

7 Introducton to trp dstrbuton to: B from: A B A 7

8 rp dstrbuton: 3 methods Analogy based Extrapolaton or growth Choce modellng 8

9 2.1 Method 1: Analogy 9

10 he gravty model m Newton: 1 G = g m m 2 d m d G = gravtatonal force between and g = gravtatonal constant m, m = mass of planet ( respectvely) d = dstance between and m 10

11 he gravty model Assumptons: Number of trps between an orgn and a destnaton zone s proportonal to: a producton ablty factor for the orgn zone an attracton ablty factor for the destnaton zone a factor dependng on the travel costs between the zones Mathematcal formulaton: = ρq X F ρ Q X F = # trps from zone to zone = measure of average trp ntensty = producton potental of zone = attracton potental of zone = accessblty of from Possble nterpretatons of Q and X : populatons, producton & attracton, 11

12 rp dstrbuton usng the gravty model Dependng on the amount of nformaton avalable, dfferent models result Producton and attracton are both unknown Drect demand model Only producton or attracton s known Sngly constraned model (orgn or destnaton based) Both producton and attracton are known Doubly constraned model 12

13 Drect demand model Basc gravty model: = ρq X F = ρ Q X F = # trps from zone to zone = measure of average trp ntensty = producton potental of zone = attracton potental of zone = accessblty of from he producton potental and attracton potental have to be derved from populaton, area, obs (see also OD-matrx estmaton) he producton numbers and attracton numbers are unknown. ρ = Q X F 13

14 Sngly constraned model Basc gravty model: = ρq X F ρ Q X F = # trps from zone to zone = measure of average trp ntensty = producton potental of zone = attracton potental of zone = accessblty of from If the trp productons P are known: = P If the trp attractons A are known: = A 14

15 Sngly constraned: orgn = ρq X F = P ( ρ ) ρ ( ) = Q X F = Q X F = P Q = ρ P XF P = ρ X F = apx F ρ XF ( a = balancng factor) Sngly constraned orgn based model: = apx F 15

16 Sngly constraned: destnaton = ρq X F = A ( ρ ) ρ ( ) = Q X F = X QF = A A X = ρ QF A = ρq F = bq AF ρ QF ( b = balancng factor) Sngly constraned destnaton based model: = bq AF 16

17 Doubly constraned model Basc gravty model: = ρq X F ρ Q X F = # trps from zone to zone = measure of average trp ntensty = producton potental of zone = attracton potental of zone = accessblty of from rp productons P and trp attractons A are known: = P and = A 17

18 Doubly constraned model = ρq X F = A = P ( ρ ) ρ ( ) = Q X F = Q X F = P ( ρ ) ρ ( ) = Q X F = X QF = A Q = and ρ P ( XF ) X A = ρ ( QF ) 18

19 Doubly constraned model P A 1 = ρ F = ab PA F ρ XF ρ QF ρ a b = balancng factor = balancng factor Doubly constraned model: = ab PA F 19

20 2.1b Method 1b: Entropy based 20

21 Maxmsng entropy gven constrants Analogue to the thermodynamc concept of entropy as maxmum dsorder, the entropy- maxmzng procedure seeks the most lkely confguraton of elements wthn a constraned stuaton. he obectve can be formulated as: ( ) Max w = = P A c = C =!! 21

22 Illustraton entropy prncple How many ways can you dstrbute 4 people? C H Let s assume we use a con to decde where a person wll go to: thus flp a con 4 tmes In total there are 16 sequences leadng to 5 optons: 4H,0 (1) 3H,1 (4), 2H,2 (6), 1H,3 (4), 0H,4 (1) Weght of each opton s determned by!! 22

23 Dervaton (1/2) Lagrangan of maxmsaton obectve:! λ P + + λ A β C c! + Usng as approxmaton ( N ) ln! ln ( N! ) N ln ( N) N ln N N ( ) = ln λ λ β c = 0 λ λ β c λ λ β c = e = e e e ( ) Settng dervatves equal to zero and solvng the equaton Note that the other dervatves lead to the orgnal constrants 23

24 Dervaton (2/2) Substtute result n constrants = e λ P = λ λ β c e = e λ e 1 e λ β c = a λ β c = P Smlar for destnatons, and substtute n λ λ β c β c = e e e = a P b A e Whch s equvalent to the doubly constraned model hus dfferent routes lead to smlar formulaton 24

25 2.1c Method 1: Dstrbuton functons and example 25

26 Dstrbuton or deterrence functons F = f( c ) c = travel cost from zone to zone f dstrbuton functon descrbes the relatve wllngness to make a trp as a functon of the travel costs. bke tran car 10km 50km dstance 26

27 Requrements for dstrbuton functons Decreasng wth travel costs Integral should be fnte Fracton ( ) ( ) F a c F c depends on value of c Fxed changes should have a dmnshng relatve mpact: ( ) ( ) ( ) ( + ) F c +Δ c F c + A+Δc > F c F c A 27

28 Dstrbuton functons f Power functon: f( c ) = c α Exponental functon: f( c) = α exp( βc) op-exponental functon: f ( c ) = αc β exp( γc ) 2 Lognormal functon: f( c ) = α exp( β ln ( c + 1)) 2 op-lognormal functon: f ( c ) = αc β exp( γ ln ( c + 1)) Log-logstc functon: f( c ) = α/(1 + exp( β + γ log( c ))) travel cost 28

29 Example doubly constraned model rp balancng 3 P A

30 Example doubly constraned model P rp balancng ravel costs c A

31 Example doubly constraned model P 100 rp balancng ravel costs c Accessbltes F A F = f( c ) = 5 exp( 0.5 c ) 31

32 Example doubly constraned model A rp balancng 3 P ravel costs c Accessbltes F Balancng factors a, b

33 Example doubly constraned model rp balancng 3 P ravel costs c Accessbltes F Balancng factors a, b A

34 rp dstrbuton usng the gravty model rp balancng 3 P ravel costs c Accessbltes F Balancng factors a, b A

35 Example doubly constraned model rp balancng 3 P ravel costs c Accessbltes F Balancng factors a, b Repeat untl there are no changes: =>OD matrx A

36 2.2 Method 2: Extrapolaton or growth 36

37 Growth factor models base matrx trp observatons outcomes of gravty model traffc counts Growth factors outcomes future trp generaton model outcomes future gravty model predcted matrx 37

38 Growth factor models Advantages Network specfc peculartes can be captured by observatons A base matrx s more understandable and verfable than a model Dsadvantages New resdental zones are dffcult to capture Hstorcal patterns may change over tme 38

39 Growth factor models 0 g = g 0 base matrx cell growth factor predcted matrx cell = g 0 Network ndependent, general factor = g 0 or = g 0 Network ndependent, orgn or destnaton specfc factor = g g 0 Network ndependent, factors for orgns and destnatons = g Network dependent, OD-specfc factors 0 39

40 Common applcaton Gven expected spatal development Future producton (departures) Future attracton (arrvals) Fll n new areas by copyng columns and rows of nearby zones from the base year matrx Adapt ths base year matrx usng approprate factors a and b Iteraton process sldes

41 2.3 Method 3: Choce modellng 41

42 Dscrete choce model = P exp( µ V ), exp( µ V ) k k V = β X β c 1 2 = β1, β2 = µ = P = X = c = number of trps from to parameters scalng parameter trp producton at zone trp attracton potental at zone travel cost from zone to zone 42

43 Explanatory varables? Inhabtants Households Jobs Retal obs Students Denstes Locaton types Etc. Mnus travel costs More suted for trps or for tours? 43

44 Dervaton of the gravty model (reprse) zone Observed utlty for actvtes n zone and zone : V = N N β c 2 Subectve utlty: U = V + ε Number of people travelng from to : N P c N zone µ V e p = µ Vrs e rs = exp( µ N ) exp( µ N ) exp( µβ2c ) exp( µ V ) rs rs = ρq X F 44

45 3. Specal ssues 45

46 Specal ssues Dstrbuton functon and trp length dstrbuton Intrazonal trps External zones: through traffc All trps or sngle mode? 46

47 Dstrbuton functon and trp length dstrbuton Smlar or dfferent? Smply put: dstrbuton functon s nput and trp length dstrbuton s output! 47

48 Intrazonal trps What s the problem? Intrazonal travel costs? Rule of thumb: (or?) of lowest cost to neghbourng zone rue for publc transport? Alternatve: rp generaton for ntrazonal only How? 48

49 External zones wo possble ssues Sze ssue Very large zones => hgh values for producton and attracton => ntrazonal trps? => small errors lead to large dfferences Cordon models hrough traffc follows from other source, e.g. lcense plate survey or other model => through traffc s thus fxed nput and should not be modelled usng trp dstrbuton models 49

50 Approach for cordon model Determne producton and attracton for nternal zones usng e.g. regresson Determne producton and attracton for external zones usng e.g. counts Derve matrx for through traffc (.e. from cordon zone to cordon zone) from e.g. a regonal model Subtract through traffc from producton and attracton of the external zones Apply gravty model wth the resultng producton and attracton, whle makng sure that there s no through traffc, e.g. by settng the travel costs between cordon zones equal to Add matrx for through traffc to the resultng matrx of the gravty model 50

51 All trps or a sngle mode? Check the sldes Whch parts consder a sngle mode? 51

Lecture 4: Land Use Transportation Models:

Lecture 4: Land Use Transportation Models: SCHOOL OF GEOGRAPHY Lecture 4: Land Use Transportaton Models: Gravtaton and Spatal Interacton, Dervaton Methods Centre Centre for Advanced for Advanced Spatal Spatal Analyss, Unversty College London Outlne

More information

Gravitation and Spatial Interaction

Gravitation and Spatial Interaction Unversty College London Lectures on Urban Modellng January 2017 Gravtaton and Satal Interacton Mchael Batty m.batty@ucl.ac.u @mchaelbatty 16 January, 2017 htt://www.satalcomlexty.nfo/ Lectures on Urban

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Question No. 1 (12 points)

Question No. 1 (12 points) Fnal Exam (3 rd Year Cvl) ransportaton lannng & rac Engneerng Date: uesday 4 June 20 otal Grade: 00 onts me: 09:30am 2:30pm Instructor: Dr. Mostaa Abo-Hashema, roessor Notes:. Answer all questons and assume

More information

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan Wnter 2008 CS567 Stochastc Lnear/Integer Programmng Guest Lecturer: Xu, Huan Class 2: More Modelng Examples 1 Capacty Expanson Capacty expanson models optmal choces of the tmng and levels of nvestments

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Semiparametric geographically weighted generalised linear modelling in GWR 4.0

Semiparametric geographically weighted generalised linear modelling in GWR 4.0 Semparametrc geographcally weghted generalsed lnear modellng n GWR 4.0 T. Nakaya 1, A. S. Fotherngham 2, M. Charlton 2, C. Brunsdon 3 1 Department of Geography, Rtsumekan Unversty, 56-1 Tojn-kta-mach,

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

Thermodynamics and statistical mechanics in materials modelling II

Thermodynamics and statistical mechanics in materials modelling II Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Marginal Utility of Income and value of time in urban transport. Abstract

Marginal Utility of Income and value of time in urban transport. Abstract Margnal Utlty of Income and value of tme n urban transport Chrstelle Vauroux Unversty of Cncnnat Abstract We relax the assumpton of constancy of the margnal utlty of ncome nto a structural model of urban

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Word Count: 6850(text) + 7 (tables/figures) x 250 = 8600 equivalent words

Word Count: 6850(text) + 7 (tables/figures) x 250 = 8600 equivalent words ESTIMATING SURVEY WEIGHTS WITH MULTIPLE CONSTRAINTS USING ENTROPY OPTIMIZATION METHODS Hllel Bar-Gera Department of Industral Engneerng and Management Ben-Guron Unversty of the Negev P O Box 653, Beer-Sheva,

More information

ECTRI FEHRL FERSI Young Researchers Seminar 2015

ECTRI FEHRL FERSI Young Researchers Seminar 2015 DLR.de Chart 1 ECTRI FEHRL FERSI Young Researchers Semnar 2015 TRANSPORT USER BENEFITS MEASURE FOR TRAVEL DEMAND MODELS WITH CONSTRAINTS Chrstan Wnkler Insttute of Transport Research German Aerospace Center

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

10) Activity analysis

10) Activity analysis 3C3 Mathematcal Methods for Economsts (6 cr) 1) Actvty analyss Abolfazl Keshvar Ph.D. Aalto Unversty School of Busness Sldes orgnally by: Tmo Kuosmanen Updated by: Abolfazl Keshvar 1 Outlne Hstorcal development

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Hila Etzion. Min-Seok Pang

Hila Etzion. Min-Seok Pang RESERCH RTICLE COPLEENTRY ONLINE SERVICES IN COPETITIVE RKETS: INTINING PROFITILITY IN THE PRESENCE OF NETWORK EFFECTS Hla Etzon Department of Technology and Operatons, Stephen. Ross School of usness,

More information

Andreas C. Drichoutis Agriculural University of Athens. Abstract

Andreas C. Drichoutis Agriculural University of Athens. Abstract Heteroskedastcty, the sngle crossng property and ordered response models Andreas C. Drchouts Agrculural Unversty of Athens Panagots Lazards Agrculural Unversty of Athens Rodolfo M. Nayga, Jr. Texas AMUnversty

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients ECON 5 -- NOE 15 Margnal Effects n Probt Models: Interpretaton and estng hs note ntroduces you to the two types of margnal effects n probt models: margnal ndex effects, and margnal probablty effects. It

More information

Chapter 20 Duration Analysis

Chapter 20 Duration Analysis Chapter 20 Duraton Analyss Duraton: tme elapsed untl a certan event occurs (weeks unemployed, months spent on welfare). Survval analyss: duraton of nterest s survval tme of a subject, begn n an ntal state

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Dynamic Programming. Lecture 13 (5/31/2017)

Dynamic Programming. Lecture 13 (5/31/2017) Dynamc Programmng Lecture 13 (5/31/2017) - A Forest Thnnng Example - Projected yeld (m3/ha) at age 20 as functon of acton taken at age 10 Age 10 Begnnng Volume Resdual Ten-year Volume volume thnned volume

More information

The Granular Origins of Aggregate Fluctuations : Supplementary Material

The Granular Origins of Aggregate Fluctuations : Supplementary Material The Granular Orgns of Aggregate Fluctuatons : Supplementary Materal Xaver Gabax October 12, 2010 Ths onlne appendx ( presents some addtonal emprcal robustness checks ( descrbes some econometrc complements

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek Dscusson of Extensons of the Gauss-arkov Theorem to the Case of Stochastc Regresson Coeffcents Ed Stanek Introducton Pfeffermann (984 dscusses extensons to the Gauss-arkov Theorem n settngs where regresson

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Expectation propagation

Expectation propagation Expectaton propagaton Lloyd Ellott May 17, 2011 Suppose p(x) s a pdf and we have a factorzaton p(x) = 1 Z n f (x). (1) =1 Expectaton propagaton s an nference algorthm desgned to approxmate the factors

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy ESCI 341 Atmospherc Thermodynamcs Lesson 10 The Physcal Meanng of Entropy References: An Introducton to Statstcal Thermodynamcs, T.L. Hll An Introducton to Thermodynamcs and Thermostatstcs, H.B. Callen

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information