Density matrix. c α (t)φ α (q)

Size: px
Start display at page:

Download "Density matrix. c α (t)φ α (q)"

Transcription

1 Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n order to be able to solve problems. The same materal s covered n Chapter 10 of your book, wth more detals and examples. I recommend you have a look at that as well, after readng ths. There may be some dfferences of notaton (though I wll do my best to follow thers, where possble) but f you understand the man deas, that should not bother you too much. 1 Pure vs. mxed states In all the quantum mechancs that you have studed so far, you only looked at stuatons where there s certanly a wave-functon descrbng the system of nterest. If we call q the generalzed coordnates (spatal locatons, for smple atoms) then ths wavefuncton Ψ(q,t) gves the ampltude of probablty that at tme t, the generalzed coordnates have values near q. Ths wavefuncton can be found (at least n prncple) from the Schrödnger equaton, and once we have t we can calculate the expectaton value of any operator ( Ψ,ÂΨ). The way ths s usually done, s to fnd a complete bass set, let us call t {φ α (q)}, where α stand for some quantum numbers (how many are necessary vares from problem to problem). Because we are consderng fnte-sze systems, we can always consder these quantum numbers to be dscrete, but n more general cases some or all of them could be contnuous. I wll use α to denote a sum over all these bass states, wth the understandng that f one or more of the quantum numbers ncluded n α are contnuous, we wll actually ntegrate over them. If the bass s complete, then any wavefuncton can be decomposed as a lnear combnaton: Ψ(q,t) = α c α (t)φ α (q) and the problem s reduced to fndng the decomposton coeffcents c α (t). Once these are known, the expectaton value of any operator n ths state s: ( Ψ, ÂΨ ) = α,α c α(t)c α (t) ( φ α (q),âφ α (q)) = α,α c α(t)c α (t)a α,α where A α,α s the matrx element of the operator between those two bass states. So, n prncple, all thngs can be calculated. Cases such as ths, where the system s descrbed by a wavefuncton, are called pure states. Whle you mght thnk that the system s surely always descrbed by a wavefuncton, ths s actually not the case, n general. As you know, n many cases we look at our system of nterest beng coupled to a reservor. If the total system = system+reservor s solated, we can defne a wavefuncton for the total system, Ψ T (q,q R,t). If there were no nteractons, we could separate ths nto a product of two parts Ψ(q,t)Ψ R (q R,t) (ths smply shows that what the system s dong s ndependent of what the reservor s dong, f there are no nteractons between them) and n ths case we can dentfy Ψ(q,t) as the wavefuncton of the system. But f the system and the reservor nteract, whch s the case we are nterested n, we can no longer separate a system wavefuncton from a reservor wavefuncton. We do not want to work wth Ψ T (q,q R,t), because ths contans all the extra nformaton about what the reservor s dong, and we don t care/need to know that. So the queston s, how do we deal wth such a case, where there s no well-defned sngle wavefuncton for the system of nterest? Such cases are called mxed states. 1

2 What we do, s to say that the system may be wth probablty w n a state descrbed by a wavefuncton Ψ (q,t). In other words, nstead of sayng that the system s certanly n a state descrbed by a sngle wavefuncton, we allow t to be, wth dfferent probabltes, n dfferent states descrbed by dfferent wavefunctons. Of course, we must have w = 1. In ths mxed state, the expectaton value of any operator s gven by: ( w Ψ,ÂΨ ) snce wth probablty w the system s n state Ψ, n whch case the expectaton value s ( Ψ,ÂΨ ). Hopefully, ths looks lke a reasonable formula to you. Each of the possble wavefunctons can stll be decomposed n a complete bass set as: Ψ (q,t) = α c () α (t)φ α (q) and therefore, f we know these coeffcents and the probabltes w, we can rewrte: w c α () α,α (t)c () α (t)a α,α = α,α ρ α,α(t)a α,α (1) where we defne ρ α,α(t) = w c α () (t)c () α (t) Eq. (1) s very nterestng, because t shows that to calculate expectaton values, we only need these quanttes ρ α,α(t) (as opposed to needng to know each ndvdual Ψ,w ). Snce expectaton values are all we need to fnd at the end of a calculaton, t follows that all useful nformaton about the system s encoded n these matrx elements ρ α,α(t). We can defne the operator ˆρ(t) such that: (φ α (q), ˆρ(t)φ α (q)) = ρ α,α (t) (2) Ths s called the densty matrx or densty operator, and as I just sad, t contans all needed knowledge about the system. So ths densty operator (or equvalently, all ts matrx elements) replace the sngle wavefuncton that we had n the pure case. Wth ths defnton, we see that we can use the short-hand notaton: α,α ρ α,α(t)a α,α = Tr (ˆρ(t) Â) because α ρ α,α(t)a α,α gves us the matrx element (ˆρ(t) Â) α,α (just smple matrx multplcaton); and summng over all the dagonal matrx elements gves us the trace. You wll see ths trace notaton appear a lot; untl you get used to t, you should also wrte everythng explctly n terms of matrx elements, and convnce yourself that the formulae always agree. One bg advantage of usng the trace formulae s that they are correct no matter what bass one choose for the Hlbert space. Before dscussng what the densty matrx may be for our systems of nterest, let us quckly dscuss some general propertes of ths operator. (1) ρ αα s the probablty to fnd the system n state α of the bass. Ths comes from the defnton just followng Eq. (1): ρ α,α (t) = w c () α (t) 2 2

3 Snce c () α (t) 2 s the probablty for a system descrbed by Ψ to be found n the bass state α, summng over all possble states weghted by ther probabltes should ndeed gve us the total probablty to fnd the system n state α. (2) Tr(ˆρ) = α ρ α,α = 1. Ths can be shown ether usng (1) (the system s surely n some bass state); or usng the normalzaton of the Ψ states, whch means (Ψ, Ψ ) = α c α () (t) 2 = 1, whch combned wth the fact that w = 1, gves us agan ths; or smply, snce the average of the unt operator must be 1, we must have 1 = ˆ1 = Tr (ˆρ(t) ˆ1 ) = Tr(ˆρ). Ths condton bascally replaces the normalzaton condton that we have for the wavefuncton of a system n pure state. (3) ˆρ = ˆρ,.e. the densty matrx s a Hermtan operator. In terms of matrx elements ths means that ρ α,α = ρ α,α and s straghtforward to check from the defnton followng Eq. (1). (4) ˆρ s postve defnte, by whch we mean that all ts egenvalues are postve (or zero) numbers. Ths comes from a combnaton of the propertes above. Snce ˆρ s hermtan, we know for sure that there s a complete bass n whch ts matrx s dagonal. Moreover, the egenvalues must be real numbers. From (1), we know that these egenvalues (the dagonal elements n ths specal bass) are related to probabltes, so they must be not only real, but also postve numbers. Let us call ths specal complete bass set {ψ n (q)}, where n ndexes ts quantum numbers. Because ˆρ s dagonal n ths bass, we have ρ n,n = δ n,n ρ n, where δ n,n s the Kronecker symbol, equal to 1 f n = n and zero otherwse. ρ n s the correspondng egenvalue, and as we know from (1), t s also the probablty to fnd the system n bass state n. (5) Tr(ˆρ 2 ) 1. Snce the value of the trace does not depend on the bass we use to evaluate t, let s use the specal bass. In ths case, Tr(ˆρ 2 ) = n ρ 2 n (check ths!). Snce 0 ρ n 1 (they are probabltes), we have n ρ 2 n ( n ρ n ) 2 = 1, because n ρ n = Tr(ˆρ) = 1. The only way for Tr(ˆρ 2 ) = 1 s for the system to be n a pure state,.e. to be wth certanty descrbed by a sngle wavefuncton. You should check that f, ndeed, only one of the w = 1, whle all the other ones are zero, we fnd Tr(ˆρ 2 ) = 1. So the value of Tr(ˆρ 2 ) tells us f the system s n a pure state (result s 1) or a mxed state (result s strctly less than 1). (6) Fnally, we need the analog of the Schrödnger equaton. For a pure state, that allows us to fnd the wavefuncton at all tmes, f we know t at the ntal tme. We would lke a smlar equaton that allows us to fnd ˆρ(t), f we know ˆρ(0). Ths equaton s called the Louvlle-von Neumann equaton, and s: h d ˆρ(t) = [H, ˆρ(t)] dt where H s the Hamltonan of the system. Ths can be derved from the fact that each possble wavefuncton Ψ (t) satsfes the Schrödnger equaton, try t. However, we must be very careful wth ths, because t can only be used f there s a Hamltonan for the system (.e., the system s solated). If the system nteracts wth a reservor, then one needs to also nclude somehow the effects of the nteracton Hamltonan on the evoluton of the densty matrx. That s a very complcated problem, and some aspects of t are actually stll matters of actve research. So remember that ths equaton 3

4 holds only for solated systems. More about ths s dscussed on page 269 of your textbook. 2 Densty matrces for varous quantum statstcal ensembles Let H be the Hamltonan of our system of nterest, f t was solated. If the system was truly solated, then t would n prncple be descrbed by a sngle wavefuncton, and t would be n a pure state. The natural bass to use n ths case are the egenstates of the Hamltonan Hφ α (q) = E α φ α (q) where α are the needed quantum numbers. If the system was truly solated, ts energy could only be one of the allowed values E α. Even f the level α for the allowed energy E = E α s degenerate, f at t = 0 the system starts n one partcular egenstate correspondng to ths energy, let s say, Ψ(q,t = 0) = φ α0 (q), where E α0 = E, then the system wll forever stay n ths egenstate, wth Ψ(q,t) = e ī h Eα 0 t φ α0 (q). So we would always precsely know the pure state of the system. However, even n a mcrocanoncal ensemble, when the system s supposed to be solated, n fact we know that t stll has small nteractons wth other systems (for nstance, the quantum gas wll nteract wth the walls of the contaner, whch are made of atoms that vbrate about ther equlbrum postons. As gas atoms ht the wall, small amounts of energy can be transmtted back and forth between the gas and the wall). Generally these exchanges are very small, and they cannot change the system from one egenvalue E α to another one. But such nteractons are enough to randomly change the wavefuncton of the system between dfferent allowed egenfunctons. So even f we start n a partcular state α 0, as collsons take place, the system wll swtch randomly through all the other allowed states α. Let s call Ω ther multplcty (the degeneracy of the level wth the allowed energy, whch tells us how many possble canddates we have for these possble wavefunctons of the system). Clearly, n ths case the system s n a mxed state, and each of these Ω states are contrbutng. How much? Well, we ll plead agan total gnorance, and say that they must all be contrbutng equally, snce we have no reason to dscrmnate. Then, the probablty to be n any of these allowed states s 1/Ω, and the average of any operator must be: allowedα 1 ( φα Ω,Âφ 1 α) = allowedα Ω A α,α We can now use ths to construct the densty matrx. It s actually partcularly convenent to use ths bass to express ts matrx elements. If you follow the general dscusson for ths partcular case, you fnd that: { 1, f α s an allowed energy egenstate ρ α,α = Ω 0, otherwse and ρ α,α = 0 s α α. So n ths case, we fnd trvally that Tr(ˆρ Â). The same apples to other ensembles. For nstance, for a canoncal ensemble, we know that the probablty to be n energy egenstate α s w α = exp( βe α )/Z. Unlke n the mcrocanoncal state, now all possble energy egenstates get mxed n, but wth dfferent probabltes whch depend on the temperature of the system (fxed by that of the reservor). In ths case, followng the defnton, you can show that agan ρ α,α = 0 f α α,.e. the densty matrx s dagonal. Moreover: ρ α,α = 1 Z e βeα 4

5 Snce ths s the probablty to fnd system n state α, and ths must be normalzed, we fnd Z = α e βeα. The prevous equaton gves us the matrx elements. The queston s, can we extract the operator? The answer s: ˆρ = 1 Z e βĥ You should check that the matrx elements (φ α, ˆρφ α ) are ndeed equal to ρ α,α. Then, the average value of any operator s, by defnton: Tr(ˆρ Â) = α,α ρ α,α A α,α = α ρ αα A α,α snce the off-dagonal matrx elements are all zero. Ths leads to the expresson that we are actually usng for calculatons: 1 e βeα A α,α Z α The value of Z also can be re-expressed as a condton for the normalzaton of the densty matrx: 1 = Tr(ˆρ) = 1 Z Tr(e βh ) Z = Tr(e βh ) = α e βeα Smlar arguments apply for the grand-canoncal case, where one fnds ˆρ = 1 ˆN) e β(ĥ µ Z where ˆN s the number operator, countng how many partcles are n the system. Ths formula contans all needed knowledge, and we can derve the averages of operators, normalzaton condtons, etc, all from ths. You must admt that ths s a rather elegant and compact formulaton. The bottom lne s that ths notaton n terms of ˆρ and traces, etc. s just a condensed form for what we have been usng n class. Whle such smplfed notaton s not partcularly necessary when dealng wth smple systems of non-nteractng partcles, t becomes more and more mportant f one looks at more complcated problems (for nstance, nteractng systems). In those case, equatons generally get very long and complcated and any shorthand and compactfcaton s very useful. Those of you who wll contnue wth graduate studes n physcs are very lkely to encounter these densty matrces n the future (dependng on what area of physcs you choose to specalze n). 5

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Thermodynamics and statistical mechanics in materials modelling II

Thermodynamics and statistical mechanics in materials modelling II Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy ESCI 341 Atmospherc Thermodynamcs Lesson 10 The Physcal Meanng of Entropy References: An Introducton to Statstcal Thermodynamcs, T.L. Hll An Introducton to Thermodynamcs and Thermostatstcs, H.B. Callen

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I

PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I Jean Well INDEPENDENT STUDY PAPER Professor S.G. Rajeev 10 th December 2017 1 Introducton A method s more mportant than a dscovery, snce the rght method

More information

Quantum Statistical Mechanics

Quantum Statistical Mechanics Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Note on EM-training of IBM-model 1

Note on EM-training of IBM-model 1 Note on EM-tranng of IBM-model INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Statistical mechanics handout 4

Statistical mechanics handout 4 Statstcal mechancs handout 4 Explan dfference between phase space and an. Ensembles As dscussed n handout three atoms n any physcal system can adopt any one of a large number of mcorstates. For a quantum

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation 1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems

Explicit constructions of all separable two-qubits density matrices and related problems for three-qubits systems Explct constructons of all separable two-qubts densty matrces and related problems for three-qubts systems Y. en-ryeh and. Mann Physcs Department, Technon-Israel Insttute of Technology, Hafa 2000, Israel

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

XII. The Born-Oppenheimer Approximation

XII. The Born-Oppenheimer Approximation X. The Born-Oppenhemer Approxmaton The Born- Oppenhemer (BO) approxmaton s probably the most fundamental approxmaton n chemstry. From a practcal pont of vew t wll allow us to treat the ectronc structure

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1 CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information