Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only

Size: px
Start display at page:

Download "Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only"

Transcription

1 Name : 1 Qadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T ntoine lists the following vector operation statements: R U 1) ST + SR MU ) UT + UR SM 3) RS + RU RT 4) MT + MR + MS + MU 0 5) SR ST RT Which of these statements are tre? ) 1, and 3 only ), 4 and 5 only ) 1, and 5 only ) 1, 3 and 4 only Given the following information: a and b are nonzero vectors in the plane a b k is a scalar not eqal to zero k 1 Which of the following statements is tre? ) k( a b) ka kb ) k( a + b) ka + kb ) If a b 0 then a and b are collinear ) If a kb then a and b are noncollinear 3 Given and v two vectors that are not opposite. Which of the following is FLS? ) v v ) ( + v) + v ) 3v 6v ) + 3v 3 + v

2 4 Given the following prism having a rectanglar base. F H G Which vector is eqivalent to the resltant of the expression + H +? ) H ) F ) ) 5 The gyptians sed an ingenios plley system to move the blocks of stone sed in the constrction of pyramids. To minimize the work needed to displace the blocks, they applied a force oriented at 6. (Work (Nm) is the scalar prodct of the force vector and the displacement vector.) 1500 N 6 00 m Ronded to the nearest Nm, what work is needed to displace a block of stone horizontally for a distance of 00 m, if the force applied to it is 1500 N oriented at 6 o? ) Nm ) Nm ) Nm ) Nm 6 The following figre represents a right prism. H G F Which of these statements is FLS? ) + GF 0 ) 0 ) F 0 ) H + HF + FG G 0

3 7 Given the three vectors, v, and w. v (-, -3) and w are represented in the artesian plane below: y w x Which of the following statements is TRU? ) v and - are opposite. ) and v are eqivalent. ) w and ( v + w ) are perpendiclar. ) and 3 v are collinear. 8 Given vector parallelogram PQRS. Q R P S Which of the following statements is FLS? ) PQ + QR PR ) RP SP RS ) PS + SR RP ) SQ + QR + RS O

4 9 onsider rectangle shown below. Which of the following statements is tre? ) + ) + ) ) 10 Given vectors (-3, 9), v (6, ), w (6, -18) and k 0. Which of the following statements is FLS? ) k + kv k( + v) ) k v k w k ( v + w) ) and w are collinear. ) and v are orthogonal. 11 Given that and v are vectors, which of the following is NOT a vector? ) + v ) v ) v ) ( + v)

5 1 Given a and b, two vectors illstrated below. b a Which one of the following diagrams illstrates the relation between a and b and r, the resltant vector? ) r b ) b r a a ) r ) b r b a a 13 n airplane flying ast at 150 km/h enconters a 50 km/h wind blowing in a 30 ast of North direction. What will be the airplane's resltant velocity? ) 180 km/h [ 14 N] ) 00 km/h [N 30 ] ) 195 km/h [ 7 N] ) 13 km/h [ 19 S] 14 Given (3, ), and v (1, - 4) What are the components of the resltant of the following vector operation? v ) (1, 10) ) (, 6) ) (1, -6) ) (5, -6)

6 15 Given vectors and v shown below. v Which of the following vectors represents the resltant, r, of v? ) r ) r ) r ) r 16 Given vectors,,, below: Which proposition is TRU? ) + + ) + - ( + ) ) + + ) Vector (, -5) makes an angle of 40 with vector v whose magnitde is 7.8 nits. To the nearest tenth, what is the scalar prodct (dot prodct) of and v? ) 7.0 nits ) 3. nits ) 7.4 nits ) 4.0 nits

7 18 Given vectors and v. where (-, 3) and (6, 7) v (4, - 4) What is the scalar prodct of vectors and v? 19 Vectors and v are represented in the artesian plane below. where (3, 4) and (8, 14) v where (8, 1) and (5, -5) y v x What is the scalar prodct of vectors and v? 0 Given ( 9, ) and v ( a, b), two vectors that form a basis. Vector w (4, 16) can be expressed by the following linear combination: w + 3v. What are the components of vector v? 1 onsider the two vectors and v. The magnitde of is 10 cm at an angle of 140. The magnitde of v is 15 cm at an angle of 40. c + 3v What is the magnitde of c? Given vectors and v where: with (-5, 7) and (3, -5) v (6, 3) Find + v. Rond yor answer to the nearest tenth.

8 3 The scalar prodct of vectors d and f is 138. Their respective magnitdes are 7 and 5 nits. What is the measre of angle θ between vectors d and f? Rond yor answer to the nearest degree. d θ f 4 Given: (-1, 1) and ( 1, ) v. What are the components of ( 3v)? 5 On a compter screen, an alien ship was travelling at a very rapid speed. When it reached point (3, -), it sddenly exploded with one piece moving to point (-1, 3) and the other to point (5, 1). N (-1, 3) W v (5, 1) S (3, -) What is the sm of vectors and v? Give the magnitde of the resltant vector to the nearest nit, and its direction to the nearest degree. 6 Two nit vectors, and v, form a 60 angle as shown. What is the magnitde of the vector w if w + 3v? v 60

9 7 plane goes from city to city. In a artesian plane, city is at the origin and city has coordinates (100, 150). If there is no wind, the flight lasts one hor. Unfortnately, there is a wind. If the pilot does not adjst his flight path, he will be at point (10, 160) after an hor. What is the speed of the wind? 8 In qadrilateral illstrated below, points M, N, O and P are the midpoints of segments,, and respectively. P M O N Using the above figre, prove the following proposition: "The midpoints of the sides of any qadrilateral form the vertices of a parallelogram." 9 Given and v represented in the artesian plane below. y v 1 1 x What is the measre of the angle between these vectors, ronded to the nearest hndredth?

10 30 Peter and Marie are plling on an object. The forces they applied are 100 N and 50 N respectively bt in different directions: 40 and 10. The sitation is represented below. 100 N 50 N Tim is going to replace them. What force mst Tim apply to prodce the same effect on the object (strength and direction)? 31 Given the reglar hexagon on the right where a and b. F Prove the following identity: F a. 3 In the polygon below, G is a sqare. and G are the midpoints of sides G and F, respectively. Side is parallel to side F. G F Using the properties of vectors, show that + F + GF G.

11 33 Given the adjacent rhombs. Use vectors to prove the following statement: «The diagonals of the rhombs are perpendiclars.» 34 hot air balloon is flying de soth at 50 km/h. N Sddenly, the wind starts blowing from the sotheast at 8 km/h. N-W N- What is the reslting speed and direction of the hot air balloon? W S-W S- S 35 n airplane leaves airport and mst fly to airport. In the artesian plane on the right, these airports are represented by points and respectively. The scale of the graph is in kilometres. y O N S (400, 00) ring the flight, the plane enconters a steady wind. This wind is represented by (150, 15) the vector v (0, -15). x The pilot steers the plane so as to negate the effect of the wind. To the nearest degree, at what angle relative to the east shold the pilot point the plane in order to reach airport?

12 36 Triangle, shown on the right, is isosceles. Using vectors, show that median M is eqal to ( ) 1 M +. M 37 n airplane is flying de north at 00 km/h. N Sddenly, the wind starts blowing from the northwest at 50 km/h. N-W N- What is the reslting speed and direction of the airplane? W S-W S- S

13 nswers The scalar prodct of vectors and v is 16. The scalar prodct of vectors and v is -75. The components of vector v are (, 4). c cm Ronded to the nearest tenth + v is To the nearest degree, the angle measre is 38.

14 4 5 ( 3v ) ( ( -1, 1 ) 3 ( 1, )) ((-, ) ( 3, 6) ) ((- 3) + ( 6) ) ((- 6) + ( 1) ) ( 6) 6 6( -1, 1) (- 6, 6) nswer: The components of ( 3v) are (-6, 6). To the nearest nit, the magnitde is 8 nits. To the nearest degree, the direction is W76 N or eqivalent. 6 raw the vector. Since the adjacent angles in a parallelogram are spplementary, Therefore, sing the osine Law w + 3v w ()( 3) cos v 60 w 10 w 13 w nswer The magnitde of the vector is 3.6 nits.

15 7 Let ( x, y) be the wind vector y ( 100, 150) + ( x, y) ( 10, 160) (km) ( x, y) ( 10, 160) x 10 and x y 160 and y withot wind with wind Therefore ( x, y) ( 0, 10) The speed of the wind: ( 0, 10) ity 100 x (km) nswer The wind speed is approximately.36 km/h ( + ) 1 ( + ) MN M + N PO P + O + Vectors MN and PO are therefore parallel and of eqal length. Qadrilateral MNOP is therefore a parallelogram. Given ( 5, ) and v (,3) Scalar prodct v ( 5, ) (,3) v v 16 Magnitde of the vectors v ngle between and v v v cosθ v cos θ v cos θ θ nswer The angle between these two vectors measres

16 30 Measre of angle m since two consective angle in a parallelogram are spplementary. θ Resltant force (strength) F res cos100 F res N ( )( ) 100 F res 50 N N irection of resltant force sin 100 sin θ sin θ θ 4.38 The direction is , so abot nswer Tim mst apply a force of N with a direction of Hypothesis: 1. F is a reglar hexagon. a b a b -a onclsion : F a F -b Proof Reasons 1. a) + b) a + b 1. a) hasles' relation b) y sbstittion. a) - b) - a. a) and are non-collinear vectors by definition of a reglar hexagon. b) y sbstittion 3. a) F - b) F - b 3. a) F and are non-collinear vectors by definition of a reglar polygon. b) y sbstittion F a + a + b + - a + - b a 4. y vector addition

17 F + GF G to be proved 1. G + F + G by sbstittion since G and GF. G + + F + G becase F is the vector opposite to F 3. G G by sbstittion since F 4. G + G according to hasles Relation G + G and + 5. G G according to hasles Relation G + G + hasles Relation + hasles Relation Scalar prodct + + ( ) ( ) ( ) ( ) + as - definition of a rhombs + by distribtivity definition of scalar prodct c c c length of one side of the rhombs 0 Since 0, Scalar prodct theorem Given the resltant vector Magnitde of the resltant vector cos irection 44.7 sin 45 8 sin θ sin θ θ nswer: The reslting speed of the hot air balloon is 44.7 km/h in a direction of 6.7. v θ d

18 35 omponents of vector ( , 00 15) (50, 75) omponents of the nknown vector v +?? v? (50, 75) (0, -15)? (50 0, )? (30, 90) irection of the nknown vector 90 tan θ 30 θ 1.37 v?? 90 km θ 30 km nswer: To the nearest degree, the pilot shold point the plane at an angle of 1 relative to the east in order to reach airport. 36 1) ccording to hasles Relation M + M ) ccording to hasles Relation M + M 3) Hypothesis 1 M (Isosceles Triangle) 4) Similarly -1 M 5) y adding (1) and (), we get M + + M + M 6) Sbstitting in (3) and (4), we get 1-1 M ) Simplifying (6), we get M + 8) Therefore, 1 M ( + )

19 37 N W a 50 c 00 b? c 00 km/h, North a 50 km/h, from Northwest b? In Δ b a + c ac cos () b cos (45) b km lso sin ( ) sin ( ) sin ( ) a b c sin ( ) sin ( 45) sin ( ) ( 45) -1 sin sin ( 0.100) as shown or N nswer: The reslting speed of the airplane is km/h in a direction of 1.1 or N 1.1.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10. Correction key 1 D Example of an appropriate method /4 Let x, y be the wind vector (km) y 100, 150 x, y 10, 160 100 x, 150 y 10, 160 100 withot wind with wind 100 + x = 10 and x = 0 150 + y = 160 and y

More information

Mathematics 5 SN Guide

Mathematics 5 SN Guide Mathematics 5 SN Guide 1 Quadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T Antoine lists the following vector operation statements: R U 1) ST SR 2MU 2) UT

More information

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 CONTENTS INTRODUCTION MEQ crriclm objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 VECTOR CONCEPTS FROM GEOMETRIC AND ALGEBRAIC PERSPECTIVES page 1 Representation

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

VIII - Geometric Vectors

VIII - Geometric Vectors MTHEMTIS 0-NY-05 Vectors and Matrices Martin Huard Fall 07 VIII - Geometric Vectors. Find all ectors in the following parallelepiped that are equialent to the gien ectors. E F H G a) b) c) d) E e) f) F

More information

Vectors. Vectors ( 向量 ) Representation of Vectors. Special Vectors. Equal vectors. Chapter 16

Vectors. Vectors ( 向量 ) Representation of Vectors. Special Vectors. Equal vectors. Chapter 16 Vectors ( 向量 ) Chapter 16 2D Vectors A vector is a line which has both magnitde and direction. For example, in a weather report yo may hear a statement like the wind is blowing at 25 knots ( 海浬 ) in the

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

u v u v v 2 v u 5, 12, v 3, 2 3. u v u 3i 4j, v 7i 2j u v u 4i 2j, v i j 6. u v u v u i 2j, v 2i j 9.

u v u v v 2 v u 5, 12, v 3, 2 3. u v u 3i 4j, v 7i 2j u v u 4i 2j, v i j 6. u v u v u i 2j, v 2i j 9. Section. Vectors and Dot Prodcts 53 Vocablary Check 1. dot prodct. 3. orthogonal. \ 5. proj PQ F PQ \ ; F PQ \ 1., 1,, 3. 5, 1, 3, 3., 1,, 3 13 9 53 1 9 13 11., 5, 1, 5. i j, i j. 3i j, 7i j 1 5 1 1 37

More information

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n 12.4 The Cross Prodct 873 12.4 The Cross Prodct In stdying lines in the plane, when we needed to describe how a line was tilting, we sed the notions of slope and angle of inclination. In space, we want

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

2. A diagonal of a parallelogram divides it into two congruent triangles. 5. Diagonals of a rectangle bisect each other and are equal and vice-versa.

2. A diagonal of a parallelogram divides it into two congruent triangles. 5. Diagonals of a rectangle bisect each other and are equal and vice-versa. QURILTERLS 1. Sum of the angles of a quadrilateral is 360. 2. diagonal of a parallelogram divides it into two congruent triangles. 3. In a parallelogram, (i) opposite sides are equal (ii) opposite angles

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

MT - MATHEMATICS (71) GEOMETRY - PRELIM II - PAPER - 6 (E)

MT - MATHEMATICS (71) GEOMETRY - PRELIM II - PAPER - 6 (E) 04 00 Seat No. MT - MTHEMTIS (7) GEOMETRY - PRELIM II - (E) Time : Hours (Pages 3) Max. Marks : 40 Note : ll questions are compulsory. Use of calculator is not allowed. Q.. Solve NY FIVE of the following

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Motion in One Dimension. A body is moving with velocity 3ms towards East. After s its velocity becomes 4ms towards North. The average acceleration of the body is a) 7ms b) 7ms c) 5ms d) ms. A boy standing

More information

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

Skills Practice Skills Practice for Lesson 14.1

Skills Practice Skills Practice for Lesson 14.1 Skills Practice Skills Practice for Lesson 1.1 Name Date By Air and By Sea Introduction to Vectors Vocabulary Match each term to its corresponding definition. 1. column vector notation a. a quantity that

More information

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7 754 Chapter 6 Additional Topics in Trigonometry 115. Yo ant to fly yor small plane de north, bt there is a 75-kilometer ind bloing from est to east. a. Find the direction angle for here yo shold head the

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

Vectors. February 1, 2010

Vectors. February 1, 2010 Vectors Febrary 1, 2010 Motivation Location of projector from crrent position and orientation: direction of projector distance to projector (direction, distance=magnitde) vector Examples: Force Velocity

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

Change of Variables. (f T) JT. f = U

Change of Variables. (f T) JT. f = U Change of Variables 4-5-8 The change of ariables formla for mltiple integrals is like -sbstittion for single-ariable integrals. I ll gie the general change of ariables formla first, and consider specific

More information

Geometry Simulation Test 2014 Region 1

Geometry Simulation Test 2014 Region 1 Geometry Simulation Test 2014 Region 1 1 etermine the inverse of Mark Twain s quote If you tell the truth, you don t have to remember anything. You don t have to remember anything if you tell the truth.

More information

Lesson 6.5 Exercises, pages

Lesson 6.5 Exercises, pages Lesson 6.5 xercises, pages 498 506 3. Which strategy would you use to determine the indicated measure in each triangle? a primary trigonometric ratio the osine Law the Sine Law a) cm ) cm 37 6 cm 38 d

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Physics ( (Chapter 4) (Motion in a Plane)

Physics (  (Chapter 4) (Motion in a Plane) () Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

Right Trapezoid Cover for Triangles of Perimeter Two

Right Trapezoid Cover for Triangles of Perimeter Two Kasetsart J (Nat Sci) 45 : 75-7 (0) Right Trapezoid Cover for Triangles of Perimeter Two Banyat Sroysang ABSTRACT A convex region covers a family of arcs if it contains a congrent copy of every arc in

More information

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side. Vectors EXAM review Problem 1 = 8 and = 1 a) Find the net force, assume that points North, and points East b) Find the equilibrant force 2 = 15, = 7, and the angle between and is 60 What is the magnitude

More information

GR 11 MATHS ANALYTICAL GEOMETRY

GR 11 MATHS ANALYTICAL GEOMETRY GR MATHS ANALYTIAL GEMETRY Gr Maths Analtical Geometr hecklist: The Drawers of Tools onsider 'drawers' of tools - all BASI FATS. Use these to analse the sketches, to reason, calculate, prove.... Distance,

More information

1 What is the solution of the system of equations graphed below? y = 2x + 1

1 What is the solution of the system of equations graphed below? y = 2x + 1 1 What is the solution of the system of equations graphed below? y = 2x + 1 3 As shown in the diagram below, when hexagon ABCDEF is reflected over line m, the image is hexagon A'B'C'D'E'F'. y = x 2 + 2x

More information

Reteaching , or 37.5% 360. Geometric Probability. Name Date Class

Reteaching , or 37.5% 360. Geometric Probability. Name Date Class Name ate lass Reteaching Geometric Probability INV 6 You have calculated probabilities of events that occur when coins are tossed and number cubes are rolled. Now you will learn about geometric probability.

More information

4.4 Moment of a Force About a Line

4.4 Moment of a Force About a Line 4.4 Moment of a orce bot a Line 4.4 Moment of a orce bot a Line Eample 1, page 1 of 3 1. orce is applied to the end of gearshift lever DE. Determine the moment of abot shaft. State which wa the lever will

More information

Exercise. and 13x. We know that, sum of angles of a quadrilateral = x = 360 x = (Common in both triangles) and AC = BD

Exercise. and 13x. We know that, sum of angles of a quadrilateral = x = 360 x = (Common in both triangles) and AC = BD 9 Exercise 9.1 Question 1. The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral. Solution Given, the ratio of the angles of quadrilateral are 3 : 5 : 9

More information

GEOMETRY. Similar Triangles

GEOMETRY. Similar Triangles GOMTRY Similar Triangles SIMILR TRINGLS N THIR PROPRTIS efinition Two triangles are said to be similar if: (i) Their corresponding angles are equal, and (ii) Their corresponding sides are proportional.

More information

Obliqe Projection. A body is projected from a point with different angles of projections 0 0, 35 0, 45 0, 60 0 with the horizontal bt with same initial speed. Their respective horizontal ranges are R,

More information

Name: GEOMETRY: EXAM (A) A B C D E F G H D E. 1. How many non collinear points determine a plane?

Name: GEOMETRY: EXAM (A) A B C D E F G H D E. 1. How many non collinear points determine a plane? GMTRY: XM () Name: 1. How many non collinear points determine a plane? ) none ) one ) two ) three 2. How many edges does a heagonal prism have? ) 6 ) 12 ) 18 ) 2. Name the intersection of planes Q and

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Directio n I. Model Problems. In the following problem you will learn to show vector addition using the tail-to-tip method. Find.

Directio n I. Model Problems. In the following problem you will learn to show vector addition using the tail-to-tip method. Find. Vectors represent magnitde and direction. Vectors can be named like a ray, or in bold with one letter in bold, (or in handwritten text). The magnitde of ector is the size of a ector often representing

More information

1 st Preparatory. Part (1)

1 st Preparatory. Part (1) Part (1) (1) omplete: 1) The square is a rectangle in which. 2) in a parallelogram in which m ( ) = 60, then m ( ) =. 3) The sum of measures of the angles of the quadrilateral equals. 4) The ray drawn

More information

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors.

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. Vectors summary Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. AB is the position vector of B relative to A and is the vector

More information

Practice Test Geometry 1. Which of the following points is the greatest distance from the y-axis? A. (1,10) B. (2,7) C. (3,5) D. (4,3) E.

Practice Test Geometry 1. Which of the following points is the greatest distance from the y-axis? A. (1,10) B. (2,7) C. (3,5) D. (4,3) E. April 9, 01 Standards: MM1Ga, MM1G1b Practice Test Geometry 1. Which of the following points is the greatest distance from the y-axis? (1,10) B. (,7) C. (,) (,) (,1). Points P, Q, R, and S lie on a line

More information

VECTORS Contents Page 7.0 Conceptual Map Introduction to Vector Practice Multiplication of Vector y Scalar Practice Practice 7.2

VECTORS Contents Page 7.0 Conceptual Map Introduction to Vector Practice Multiplication of Vector y Scalar Practice Practice 7.2 DDITIONL MTHEMTICS FORM 5 MODULE 7 VECTORS VECTORS Contents Page 7.0 Conceptual Map 2 7.1 Introduction to Vector Practice 7.1 3 7.2 Multiplication of Vector y Scalar Practice 7.2.1 Practice 7.2.2 4 5 7.3

More information

8-2 Vectors in the Coordinate Plane

8-2 Vectors in the Coordinate Plane 37. ROWING Nadia is rowing across a river at a speed of 5 miles per hour perpendicular to the shore. The river has a current of 3 miles per hour heading downstream. a. At what speed is she traveling? b.

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Mathematics Revision Guides Vectors Page of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Version:.4 Date: 05-0-05 Mathematics Revision Guides Vectors Page of 9 VECTORS

More information

II. Vector Basics 1. What is the magnitude and direction of """""#?! B What is the magnitude and direction of $% """""#? R

II. Vector Basics 1. What is the magnitude and direction of #?! B What is the magnitude and direction of $% #? R II. Vector Basics 1. What is the magnitde and direction of """""#?! B 8.5 A 3. What is the magnitde and direction of &' """"#? J 12 lb 28 70 K 2. What is the magnitde and direction of $% """""#? R T 4.5

More information

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8 UNIT 1 INTRODUCTION TO VECTORS Lesson TOPIC Suggested Work Sept. 5 1.0 Review of Pre-requisite Skills Pg. 273 # 1 9 OR WS 1.0 Fill in Info sheet and get permission sheet signed. Bring in $3 for lesson

More information

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks.

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. Straight Line Paper 1 Section Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of a?.

More information

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

More information

Solutions to Math 152 Review Problems for Exam 1

Solutions to Math 152 Review Problems for Exam 1 Soltions to Math 5 Review Problems for Eam () If A() is the area of the rectangle formed when the solid is sliced at perpendiclar to the -ais, then A() = ( ), becase the height of the rectangle is and

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =, SUPPLEMENT I 1. Vectors Definition. A vector is a quantity that has both a magnitude and a direction. A twodimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are

More information

1983 FG8.1, 1991 HG9, 1996 HG9

1983 FG8.1, 1991 HG9, 1996 HG9 nswers: (1- HKMO Heat Events) reated by: Mr. Francis Hung Last updated: 6 February 017 - Individual 1 11 70 6 1160 7 11 8 80 1 10 1 km 6 11-1 Group 6 7 7 6 8 70 10 Individual Events I1 X is a point on

More information

Math 144 Activity #10 Applications of Vectors

Math 144 Activity #10 Applications of Vectors 144 p 1 Math 144 Actiity #10 Applications of Vectors In the last actiity, yo were introdced to ectors. In this actiity yo will look at some of the applications of ectors. Let the position ector = a, b

More information

Triangles. Exercise 4.1

Triangles. Exercise 4.1 4 Question. xercise 4. Fill in the blanks using the correct word given in brackets. (i) ll circles are....(congruent, similar) (ii) ll squares are....(similar, congruent) (iii) ll... triangles are similar.

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

OBJECTIVE TEST. Answer all questions C. N3, D. N3, Simplify Express the square root of in 4

OBJECTIVE TEST. Answer all questions C. N3, D. N3, Simplify Express the square root of in 4 . In a particular year, the exchange rate of Naira (N) varies directly with the Dollar ($). If N is equivalent to $8, find the Naira equivalent of $6. A. N8976 B. N049 C. N40. D. N.7. If log = x, log =

More information

State, for each of the following physical quantities, if it is a scalar or a vector:

State, for each of the following physical quantities, if it is a scalar or a vector: Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRPHICS VECTORS SPRING 216 DR. MICHEL J. RELE INTRODUCTION In graphics, we are going to represent objects and shapes in some form or other. First, thogh, we need to figre ot how to represent

More information

Page 1 of 35 Website: Mobile:

Page 1 of 35 Website:     Mobile: Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement,

More information

SB Ch 6 May 15, 2014

SB Ch 6 May 15, 2014 Warm Up 1 Chapter 6: Applications of Trig: Vectors Section 6.1 Vectors in a Plane Vector: directed line segment Magnitude is the length of the vector Direction is the angle in which the vector is pointing

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Section 3.4 pplied Problems 151 3.4 pplied Problems The Law of Sines and the Law of Cosines are particularly useful for solving applied problems. Please remember when using the Law

More information

Unit 1 Representing and Operations with Vectors. Over the years you have come to accept various mathematical concepts or properties:

Unit 1 Representing and Operations with Vectors. Over the years you have come to accept various mathematical concepts or properties: Lesson1.notebook November 27, 2012 Algebra Unit 1 Representing and Operations with Vectors Over the years you have come to accept various mathematical concepts or properties: Communative Property Associative

More information

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 2

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 2 Regents Exam Questions www.jmap.org Name: 1 In square GEOM, the coordinates of G are (2, 2) and the coordinates of O are ( 4,2). Determine and state the coordinates of vertices E and M. [The use of the

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Vectors. chapter. Figure 3.1 Designation of points in a Cartesian coordinate system. Every point is labeled with coordinates (x, y).

Vectors. chapter. Figure 3.1 Designation of points in a Cartesian coordinate system. Every point is labeled with coordinates (x, y). chapter 3 Vectors 3.1 Coordinate stems 3.2 Vector and calar Qantities 3.3 ome Properties of Vectors 3.4 Components of a Vector and Unit Vectors In or std of phsics, we often need to work with phsical qantities

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks)

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks) 1. The points P( 2, 4), Q (3, 1) and R (1, 6) are shown in the diagram below. (a) Find the vector PQ. (b) Find a vector equation for the line through R parallel to the line (PQ). 2. The position vector

More information

Section A Finding Vectors Grade A / A*

Section A Finding Vectors Grade A / A* Name: Teacher ssessment Section Finding Grade / * 1. PQRSTU is a regular hexagon and is the centre of the hexagon. P = p and Q = q U P p T q Q S R Express each of the following vectors in terms of p and

More information

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 3) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 Example 11(a): Fermat point. Given triangle, construct externally similar isosceles triangles

More information

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIV GEOMETRIL OLYMPI IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally two remaining circles. lso

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 07 (017-18) SUBJECT: MATHEMATICS(041) BLUE PRINT : CLASS X Unit Chapter VSA (1 mark) SA I ( marks) SA II (3 marks) LA (4 marks) Total Unit Total

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

2, find the value of a.

2, find the value of a. Answers: (99-9 HKMO Final Events) reated by: Mr. Francis Hung Last updated: 7 December 05 Individual Events I a I a 6 I a 4 I4 a 8 I5 a 0 b b 60 b 4 b 9 b c c 00 c 50 c 4 c 57 d d 50 d 500 d 54 d 7 Group

More information

When two letters name a vector, the first indicates the and the second indicates the of the vector.

When two letters name a vector, the first indicates the and the second indicates the of the vector. 8-8 Chapter 8 Applications of Trigonometry 8.3 Vectors, Operations, and the Dot Product Basic Terminology Algeraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle etween Vectors

More information

C.B.S.E Class X

C.B.S.E Class X SOLVE PPER with SE Marking Scheme..S.E. 08 lass X elhi & Outside elhi Set Mathematics Time : Hours Ma. Marks : 80 General Instructions : (i) ll questions in both the sections are compulsory. (ii) This

More information

Time : 2 Hours (Pages 3) Max. Marks : 40. Q.1. Solve the following : (Any 5) 5 In PQR, m Q = 90º, m P = 30º, m R = 60º. If PR = 8 cm, find QR.

Time : 2 Hours (Pages 3) Max. Marks : 40. Q.1. Solve the following : (Any 5) 5 In PQR, m Q = 90º, m P = 30º, m R = 60º. If PR = 8 cm, find QR. Q.P. SET CODE Q.1. Solve the following : (ny 5) 5 (i) (ii) In PQR, m Q 90º, m P 0º, m R 60º. If PR 8 cm, find QR. O is the centre of the circle. If m C 80º, the find m (arc C) and m (arc C). Seat No. 01

More information

I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resultant Magnitude V. Find Angle associated with Resultant VI.

I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resultant Magnitude V. Find Angle associated with Resultant VI. www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resltant Magnitde V. Find Angle associated with Resltant VI. Answer

More information

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L. .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre

More information

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE A Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS (Brown Book) ASSIGNMENT DUE V 1 1 1/1 Practice Set A V 1 3 Practice Set B #1 1 V B 1

More information

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min Unit VCE Specialist Maths AT. Vectors Test Date: Friday 9 June 08 Start Time:.0 Finish Time:.35 Total Time Allowed for Task: 75 min Student Name: Teacher Name: Ms R Vaughan This assessment task will be

More information

Geometry Cumulative Review

Geometry Cumulative Review Geometry Cumulative Review Name 1. Find a pattern for the sequence. Use the pattern to show the next term. 1, 3, 9, 27,... A. 81 B. 45 C. 41 D. 36 2. If EG = 42, find the value of y. A. 5 B. C. 6 D. 7

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M S KumarSwamy, TGT(Maths) Page - 119 - CHAPTER 10: VECTOR ALGEBRA QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 06 marks Vector The line l to the line segment AB, then a

More information

H. Math 2 Benchmark 1 Review

H. Math 2 Benchmark 1 Review H. Math 2 enchmark 1 Review Name: ate: 1. Parallelogram C was translated to parallelogram C. 2. Which of the following is a model of a scalene triangle?.. How many units and in which direction were the

More information

Starting with the base and moving counterclockwise, the measured side lengths are 5.5 cm, 2.4 cm, 2.9 cm, 2.5 cm, 1.3 cm, and 2.7 cm.

Starting with the base and moving counterclockwise, the measured side lengths are 5.5 cm, 2.4 cm, 2.9 cm, 2.5 cm, 1.3 cm, and 2.7 cm. Chapter 6 Geometric Vectors Chapter 6 Prerequisite Skills Chapter 6 Prerequisite Skills Question 1 Page 302 Starting with the base and moving counterclockwise, the measured side lengths are 5.5 cm, 2.4

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Skills Practice Skills Practice for Lesson 9.1

Skills Practice Skills Practice for Lesson 9.1 Skills Practice Skills Practice for Lesson.1 Name Date Meeting Friends The Distance Formula Vocabular Define the term in our own words. 1. Distance Formula Problem Set Archaeologists map the location of

More information

Standardized Test Practice - Cumulative, Chapters What is the value of x in the figure below?

Standardized Test Practice - Cumulative, Chapters What is the value of x in the figure below? 1. What is the value of x in the figure below? 2. A baseball diamond is a square with 90-ft sides. What is the length from 3rd base to 1st base? Round to the nearest tenth. A 22.5 B 23 C 23.5 D 24 Use

More information