EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

Size: px
Start display at page:

Download "EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L."

Transcription

1 .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre (, t) in a rod of length if the initial temperatre is f () throghot and if the ends and are inslated. 4. Solve Problem 3 if and f (),,. 5. Sppose heat is lost from the lateral srface of a thin rod of length into a srronding medim at temperatre zero. If the linear law of heat transfer applies, then the heat eqation takes on the form k h,, t, h a constant. Find the temperatre (, t) if the initial temperatre is f () throghot and the ends and are inslated. See Figre.3.3. Inslated Inslated Heat transfer from lateral srface of the rod Answers to selected odd-nmbered problems begin on page ANS-. 6. Solve Problem 5 if the ends and are held at temperatre zero. Discssion Problems 7. Figre.3.(b) shows the graphs of (, t) for t 6 for, p, p6, p4, and p. Describe or sketch the graphs of (, t) on the same time interval bt for the fied vales 3p4, 5p6, p, and p. 8. Find the soltion of the bondary-vale problem given in () (3) when f() sin(5p). Compter ab Assignments 9. (a) Solve the heat eqation () sbject to (, t), (, t), t (, ).8, 5.8( ), 5. (b) Use the 3D-plot application of yor CAS to graph the partial sm S 5 (, t) consisting of the first five nonzero terms of the soltion in part (a) for, t. Assme that k.635. Eperiment with varios three-dimensional viewing perspectives of the srface (called the ViewPoint option in Mathematica). FIGURE.3.3 Rod losing heat in Problem 5.4 WAVE EQUATION REVIEW MATERIA Reread pages of Section.. INTRODUCTION We are now in a position to solve the bondary-vale problem () that was discssed in Section.. The vertical displacement (, t) of the vibrating string of length shown in Figre..(a) is determined from a,, t (, t), (, t), t (, ) f (), g(),. t () () (3)

2 446 CHAPTER BOUNDARY-VAUE PROBEMS IN RECTANGUAR COORDINATES SOUTION OF THE BVP With the sal assmption that (, t) X()T(t), separating variables in () gives so that X X (4) T a T. (5) As in the preceding section, the bondary conditions () translate into X() and X(). Eqation (4) along with these bondary conditions is the reglar Strm-ioville problem X X, X(), X(). (6) Of the sal three possibilities for the parameter, l, l a, and l a, only the last choice leads to nontrivial soltions. Corresponding to l a, a, the general soltion of (4) is X c cos a c sin a. X() and X() indicate that c and c sin a. The last eqation again implies that a np or a np. The eigenvales and corresponding eigenfnctions of (6) are l n n p and X() c sin n, n,, 3,.... The general soltion of the second-order eqation (5) is then T(t) c 3 cos t c 4 sin t. By rewriting c c 3 as A n and c c 4 as B n, soltions that satisfy both the wave eqation () and bondary conditions () are and (, t) A n cos. (8) n t B n sin t n sin Setting t in (8) and sing the initial condition (, ) f () gives (, ) f () A n sin n. n Since the last series is a half-range epansion for f in a sine series, we can write A n b n : A n f () sin. (9) n d To determine B n, we differentiate (8) with respect to t and then set t : n A n cos t B n sin t n sin n A n X X T a T sin t B n cos t n sin g() t B n n n sin. For this last series to be the half-range sine epansion of the initial velocity g on the interval, the total coefficient B n npa mst be given by the form b n in (5) of Section.3, that is, B n g() sin n d (7)

3 .4 WAVE EQUATION 447 from which we obtain B n g() sin n. () d The soltion of the bondary-vale problem () (3) consists of the series (8) with coefficients A n and B n defined by (9) and (), respectively. We note that when the string is released from rest, then g() for every in the interval [, ], and conseqently, B n. PUCKED STRING A special case of the bondary-vale problem in () (3) is the model of the plcked string. We can see the motion of the string by plotting the soltion or displacement (, t) for increasing vales of time t and sing the animation featre of a CAS. Some frames of a movie generated in this manner are given in Figre.4.; the initial shape of the string is given in Figre.4.(a). Yo are asked to emlate the reslts given in the figre plotting a seqence of partial sms of (8). See Problems 7 and in Eercises (a) t = initial shape (b) t =. (c) t = (d) t =. (e) t =.6 (f) t =.9 FIGURE.4. Frames of a CAS movie STANDING WAVES Recall from the derivation of the one-dimensional wave eqation in Section. that the constant a appearing in the soltion of the bondary-vale problem in (), (), and (3) is given by T>, where r is mass per nit length and T is the magnitde of the tension in the string. When T is large enogh, the vibrating string prodces a msical sond. This sond is the reslt of standing waves. The soltion (8) is a sperposition of prodct soltions called standing waves or normal modes: (, t) (, t) (, t) 3 (, t). In view of (6) and (7) of Section 5. the prodct soltions (7) can be written as n (, t) C n sin n t n sin, where C n A n B n and f n is defined by sin f n A n C n and cos f n B n C n. For n,, 3,... the standing waves are essentially the graphs of sin(np), with a time-varying amplitde given by C n sin t n. Alternatively, we see from () that at a fied vale of each prodct fnction n (, t) represents simple harmonic motion with amplitde C n sin(np) and freqency f n na. In other words, each point on a standing wave vibrates with a different amplitde bt with the same freqency. When n, (, t) C sin a t sin ()

4 448 CHAPTER BOUNDARY-VAUE PROBEMS IN RECTANGUAR COORDINATES (a) First standing wave Node (b) Second standing wave is called the first standing wave, the first normal mode, or the fndamental mode of vibration. The first three standing waves, or normal modes, are shown in Figre.4.. The dashed graphs represent the standing waves at varios vales of time. The points in the interval (, ), for which sin(np), correspond to points on a standing wave where there is no motion. These points are called nodes. For eample, in Figres.4.(b) and.4.(c) we see that the second standing wave has one node at and the third standing wave has two nodes at 3 and 3. In general, the nth normal mode of vibration has n nodes. The freqency f a T B Nodes 3 3 (c) Third standing wave FIGURE.4. waves First three standing of the first normal mode is called the fndamental freqency or first harmonic and is directly related to the pitch prodced by a stringed instrment. It is apparent that the greater the tension on the string, the higher the pitch of the sond. The freqencies f n of the other normal modes, which are integer mltiples of the fndamental freqency, are called overtones. The second harmonic is the first overtone, and so on. EXERCISES.4 Answers to selected odd-nmbered problems begin on page ANS-. In Problems 8 solve the wave eqation () sbject to the given conditions... (, t), (, t) (, ) ( ), 4 t (, t), (, t) (, ), ( ) 3. (, t), (, t) (, ), given in Figre.4.3, f() 7. (, t), (, t) 8. (, ) h, h,, (, ),, This problem cold describe the longitdinal displacement (, t) of a vibrating elastic bar. The bondary conditions at and are called free-end conditions. See Figre.4.4. /3 /3 (, t) FIGURE.4.3 Initial displacement in Problem 3 (, t), (, t) (, ) 6 ( ), (, t), (, t) (, ), sin 6. (, t), (, t) (, ). sin 3p, FIGURE.4.4 Vibrating elastic bar in Problem 8 9. A string is stretched and secred on the -ais at and p for t. If the transverse vibrations take place in a medim that imparts a resistance proportional to the instantaneos velocity, then the wave eqation takes on the form,, t.

5 .4 WAVE EQUATION 449 Find the displacement (, t) if the string starts from rest from the initial displacement f ().. Show that a soltion of the bondary-vale problem is (, t) 4,, t (, t), (, t), t (, ), > >,, k () k sin(k ) cos (k ) t. (k ). The transverse displacement (, t) of a vibrating beam of length is determined from a forth-order partial differential eqation a 4,, t. 4 If the beam is simply spported, as shown in Figre.4.5, the bondary and initial conditions are (, t), (, t), t,, t (, ) f (), g(),. Solve for (, t). [Hint: For convenience se l a 4 when separating variables.] FIGURE.4.5 Simply spported beam in Problem. If the ends of the beam in Problem are embedded at and, the bondary conditions become, for t, (, t), (, t),. (a) Show that the eigenvales of the problem are n n >, where n, n,, 3,..., are the positive roots of the eqation cosh cos. (b) Show graphically that the eqation in part (a) has an infinite nmber of roots. (c) Use a calclator or a CAS to find approimations to the first for eigenvales. Use for decimal places. 3. Consider the bondary-vale problem given in (), (), and (3) of this section. If g() for, show that the soltion of the problem can be written as (, t) [ f ( at) f ( at)]. [Hint: Use the identity sin cos sin( ) sin( ).] 4. The vertical displacement (, t) of an infinitely long string is determined from the initial-vale problem () This problem can be solved withot separating variables. (a) Show that the wave eqation can be pt into the form hj by means of the sbstittions j at and h at. (b) Integrate the partial differential eqation in part (a), first with respect to h and then with respect to j, to show that (, t) F( at) G( at), where F and G are arbitrary twice differentiable fnctions, is a soltion of the wave eqation. Use this soltion and the given initial conditions to show that and a,, t (, ) f (), g(). t F() f () G() f () a a g(s)ds c g(s)ds c, where is arbitrary and c is a constant of integration. (c) Use the reslts in part (b) to show that (, t). (3) aat [ f ( at) f ( at)] g(s) ds at Note that when the initial velocity g(), we obtain (, t) [ f ( at) f ( at)], This last soltion can be interpreted as a sperposition of two traveling waves, one moving to the right (that is, f ( at) ) and one moving to the.

6 45 CHAPTER BOUNDARY-VAUE PROBEMS IN RECTANGUAR COORDINATES left ( f ( at)). Both waves travel with speed a and have the same basic shape as the initial displacement f (). The form of (, t) given in (3) is called d Alembert s soltion. In Problems 5 8 se d Alembert s soltion (3) to solve the initial-vale problem in Problem 4 sbject to the given initial conditions. 5. f () sin, g() 6. f () sin, g() cos 7. f (), g() sin 8. f () e, g() Compter ab Assignments 9. (a) Use a CAS to plot d Alembert s soltion in Problem 8 on the interval [5, 5] at the times t, t, t, t 3, and t 4. Sperimpose the graphs on one coordinate system. Assme that a. (b) Use the 3D-plot application of yor CAS to plot d Alembert s soltion (, t) in Problem 8 for 5 5, t 4. Eperiment with varios three-dimensional viewing perspectives of this srface. Choose the perspective of the srface for which yo feel the graphs in part (a) are most apparent.. A model for an infinitely long string that is initially held at the three points (, ), (, ), and (, ) and then simltaneosly released at all three points at time t is given by () with f (),, and g(). (a) Plot the initial position of the string on the interval [6, 6]. (b) Use a CAS to plot d Alembert s soltion (3) on [6, 6] for t.k, k,,,..., 5. Assme that a. (c) Use the animation featre of yor compter algebra system to make a movie of the soltion. Describe the motion of the string over time.. An infinitely long string coinciding with the -ais is strck at the origin with a hammer whose head is. inch in diameter. A model for the motion of the string is given by () with f () and g(),.,.. (a) Use a CAS to plot d Alembert s soltion (3) on [6, 6] for t.k, k,,,..., 5. Assme that a. (b) Use the animation featre of yor compter algebra system to make a movie of the soltion. Describe the motion of the string over time.. The model of the vibrating string in Problem 7 is called the plcked string. The string is tied to the -ais at and and is held at at h nits above the -ais. See Figre..4. Starting at t the string is released from rest. (a) Use a CAS to plot the partial sm S 6 (, t) that is, the first si nonzero terms of yor soltion for t.k, k,,,...,. Assme that a, h, and p. (b) Use the animation featre of yor compter algebra system to make a movie of the soltion to Problem 7..5 APACE S EQUATION REVIEW MATERIA Reread page 438 of Section. and Eample in Section.4. INTRODUCTION Sppose we wish to find the steady-state temperatre (, y) in a rectanglar plate whose vertical edges and a are inslated, as shown in Figre.5.. When no heat escapes from the lateral faces of the plate, we solve the following bondary-vale problem:, a, y b y,, y b a (, ), (, b) f (), a. (3) () ()

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

Pulses on a Struck String

Pulses on a Struck String 8.03 at ESG Spplemental Notes Plses on a Strck String These notes investigate specific eamples of transverse motion on a stretched string in cases where the string is at some time ndisplaced, bt with a

More information

PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101

PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101 PHY 113 C General Phsics I 11 AM 1:15 PM R Olin 101 Plan for Lectre 16: Chapter 16 Phsics of wave motion 1. Review of SHM. Eamples of wave motion 3. What determines the wave velocit 4. Properties of periodic

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

MEC-E8001 Finite Element Analysis, Exam (example) 2017

MEC-E8001 Finite Element Analysis, Exam (example) 2017 MEC-E800 Finite Element Analysis Eam (eample) 07. Find the transverse displacement w() of the strctre consisting of one beam element and po forces and. he rotations of the endpos are assmed to be eqal

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski Advanced topics in Finite Element Method 3D trss strctres Jerzy Podgórski Introdction Althogh 3D trss strctres have been arond for a long time, they have been sed very rarely ntil now. They are difficlt

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

Homogeneous Liner Systems with Constant Coefficients

Homogeneous Liner Systems with Constant Coefficients Homogeneos Liner Systems with Constant Coefficients Jly, 06 The object of stdy in this section is where A is a d d constant matrix whose entries are real nmbers. As before, we will look to the exponential

More information

Quadratic and Rational Inequalities

Quadratic and Rational Inequalities Chapter Qadratic Eqations and Ineqalities. Gidelines for solving word problems: (a) Write a verbal model that will describe what yo need to know. (b) Assign labels to each part of the verbal model nmbers

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n 12.4 The Cross Prodct 873 12.4 The Cross Prodct In stdying lines in the plane, when we needed to describe how a line was tilting, we sed the notions of slope and angle of inclination. In space, we want

More information

Integration of Basic Functions. Session 7 : 9/23 1

Integration of Basic Functions. Session 7 : 9/23 1 Integration o Basic Fnctions Session 7 : 9/3 Antiderivation Integration Deinition: Taking the antiderivative, or integral, o some nction F(), reslts in the nction () i ()F() Pt simply: i yo take the integral

More information

III. Demonstration of a seismometer response with amplitude and phase responses at:

III. Demonstration of a seismometer response with amplitude and phase responses at: GG5330, Spring semester 006 Assignment #1, Seismometry and Grond Motions De 30 Janary 006. 1. Calibration Of A Seismometer Using Java: A really nifty se of Java is now available for demonstrating the seismic

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

Motion in an Undulator

Motion in an Undulator WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dnamics Grop :: Pal Scherrer Institte Motion in an Undlator CERN Accelerator School FELs and ERLs On-ais Field of Planar Undlator For planar

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION University of California Berkeley Physics H7C Fall 999 (Strovink SOUTION TO FINA EXAMINATION Directions. Do all six problems (weights are indicated. This is a closed-book closed-note exam except for three

More information

Vectors. February 1, 2010

Vectors. February 1, 2010 Vectors Febrary 1, 2010 Motivation Location of projector from crrent position and orientation: direction of projector distance to projector (direction, distance=magnitde) vector Examples: Force Velocity

More information

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC AMS B Pertrbation Methods Lectre 5 Copright b Hongn Wang, UCSC Recap: we discssed bondar laer of ODE Oter epansion Inner epansion Matching: ) Prandtl s matching ) Matching b an intermediate variable (Skip

More information

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control C and U Chart presented by Dr. Eng. Abed

More information

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES FOR THE P-LAPLACIAN WITH A NONLINEAR BOUNDARY CONDITION. 1. Introduction. ν = λ u p 2 u.

MAXIMUM AND ANTI-MAXIMUM PRINCIPLES FOR THE P-LAPLACIAN WITH A NONLINEAR BOUNDARY CONDITION. 1. Introduction. ν = λ u p 2 u. 2005-Ojda International Conference on Nonlinear Analysis. Electronic Jornal of Differential Eqations, Conference 14, 2006, pp. 95 107. ISSN: 1072-6691. URL: http://ejde.math.txstate.ed or http://ejde.math.nt.ed

More information

This Topic follows on from Calculus Topics C1 - C3 to give further rules and applications of differentiation.

This Topic follows on from Calculus Topics C1 - C3 to give further rules and applications of differentiation. CALCULUS C Topic Overview C FURTHER DIFFERENTIATION This Topic follows on from Calcls Topics C - C to give frther rles applications of differentiation. Yo shold be familiar with Logarithms (Algebra Topic

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 2 INTERMEDIATE AND SHORT COMPRESSION MEMBERS

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 2 INTERMEDIATE AND SHORT COMPRESSION MEMBERS MECHANICS O SOIDS COMPRESSION MEMBERS TUTORIA INTERMEDIATE AND SHORT COMPRESSION MEMBERS Yo shold jdge yor progress by completing the self assessment exercises. On completion of this ttorial yo shold be

More information

CHARACTERIZATIONS OF EXPONENTIAL DISTRIBUTION VIA CONDITIONAL EXPECTATIONS OF RECORD VALUES. George P. Yanev

CHARACTERIZATIONS OF EXPONENTIAL DISTRIBUTION VIA CONDITIONAL EXPECTATIONS OF RECORD VALUES. George P. Yanev Pliska Std. Math. Blgar. 2 (211), 233 242 STUDIA MATHEMATICA BULGARICA CHARACTERIZATIONS OF EXPONENTIAL DISTRIBUTION VIA CONDITIONAL EXPECTATIONS OF RECORD VALUES George P. Yanev We prove that the exponential

More information

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) =

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) = 350 Review Problems for Final Eam () Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos() 0 π f() = 0 π < < 2π (2) Let F and G be arbitrary differentiable functions

More information

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lectre Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 Prepared by, Dr. Sbhend Kmar Rath, BPUT, Odisha. Tring Machine- Miscellany UNIT 2 TURING MACHINE

More information

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory International Jornal of Scientific and Research Pblications, Volme, Isse 11, November 1 1 ISSN 5-15 Flere of Thick Simply Spported Beam Using Trigonometric Shear Deformation Theory Ajay G. Dahake *, Dr.

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactl qadratic bt can either be made to look qadratic

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS

FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 433-438, Gliwice 6 FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS JERZY SKRZYPCZYK HALINA WITEK Zakład

More information

A generalized Alon-Boppana bound and weak Ramanujan graphs

A generalized Alon-Boppana bound and weak Ramanujan graphs A generalized Alon-Boppana bond and weak Ramanjan graphs Fan Chng Abstract A basic eigenvale bond de to Alon and Boppana holds only for reglar graphs. In this paper we give a generalized Alon-Boppana bond

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

E ect Of Quadrant Bow On Delta Undulator Phase Errors

E ect Of Quadrant Bow On Delta Undulator Phase Errors LCLS-TN-15-1 E ect Of Qadrant Bow On Delta Undlator Phase Errors Zachary Wolf SLAC Febrary 18, 015 Abstract The Delta ndlator qadrants are tned individally and are then assembled to make the tned ndlator.

More information

Burgers Equation. A. Salih. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram 18 February 2016

Burgers Equation. A. Salih. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram 18 February 2016 Brgers Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 18 Febrary 216 1 The Brgers Eqation Brgers eqation is obtained as a reslt of

More information

A generalized Alon-Boppana bound and weak Ramanujan graphs

A generalized Alon-Boppana bound and weak Ramanujan graphs A generalized Alon-Boppana bond and weak Ramanjan graphs Fan Chng Department of Mathematics University of California, San Diego La Jolla, CA, U.S.A. fan@csd.ed Sbmitted: Feb 0, 206; Accepted: Jne 22, 206;

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF MATHEMATICS QUESTION BANK

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF MATHEMATICS QUESTION BANK SUBJECT VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 63 3. DEPARTMENT OF MATHEMATICS QUESTION BANK : MA6351- TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SEM / YEAR : III Sem / II year (COMMON

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom EPJ Web of Conferences 80, 0034 (08) EFM 07 Stdy on the implsive pressre of tank oscillating by force towards mltiple degrees of freedom Shigeyki Hibi,* The ational Defense Academy, Department of Mechanical

More information

Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs) C H A P T E R Partial Differential Equations (PDEs) 5 A PDE is an equation that contains one or more partial derivatives of an unknown function that depends on at least two variables. Usually one of these

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany Sbcritical bifrcation to innitely many rotating waves Arnd Scheel Institt fr Mathematik I Freie Universitat Berlin Arnimallee 2-6 14195 Berlin, Germany 1 Abstract We consider the eqation 00 + 1 r 0 k2

More information

A Single Species in One Spatial Dimension

A Single Species in One Spatial Dimension Lectre 6 A Single Species in One Spatial Dimension Reading: Material similar to that in this section of the corse appears in Sections 1. and 13.5 of James D. Mrray (), Mathematical Biology I: An introction,

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion CFD-Simlation thermoakstischer Resonanzeffekte zr Bestimmng der Flammentransferfnktion Ator: Dennis Paschke Technische Universität Berlin Institt für Strömngsmechanik nd Technische Akstik FG Experimentelle

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

Vibrational modes of a rotating string

Vibrational modes of a rotating string Vibrational modes of a rotating string Theodore J. Allen Department of Physics, University of Wisconsin-Madison, 1150 University Avene, Madison, WI 53706 USA and Department of Physics, Eaton Hall Hobart

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) MAE 5 - inite Element Analysis Several slides from this set are adapted from B.S. Altan, Michigan Technological University EA Procedre for

More information

LINEAR COMBINATIONS AND SUBSPACES

LINEAR COMBINATIONS AND SUBSPACES CS131 Part II, Linear Algebra and Matrices CS131 Mathematics for Compter Scientists II Note 5 LINEAR COMBINATIONS AND SUBSPACES Linear combinations. In R 2 the vector (5, 3) can be written in the form

More information

MAT389 Fall 2016, Problem Set 6

MAT389 Fall 2016, Problem Set 6 MAT389 Fall 016, Problem Set 6 Trigonometric and hperbolic fnctions 6.1 Show that e iz = cos z + i sin z for eer comple nmber z. Hint: start from the right-hand side and work or wa towards the left-hand

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions

Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions OR Spectrm 06 38:53 540 DOI 0.007/s009-06-043-5 REGULAR ARTICLE Worst-case analysis of the LPT algorithm for single processor schedling with time restrictions Oliver ran Fan Chng Ron Graham Received: Janary

More information

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS Bearings commonly sed in heavy rotating machine play a significant role in the dynamic ehavior of rotors. Of particlar interest are the hydrodynamic earings,

More information

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008 ADVANCED GCE 4753/ MATHEMATICS (MEI) Methods for Advanced Mathematics (C3) FRIDAY JANUARY 8 Additional materials: Answer Booklet (8 pages) Graph paper MEI Eamination Formlae and Tables (MF) Morning Time:

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System International Jornal of Compter Applications (97 8887) Volme 79 No., October Incompressible Viscoelastic Flow of a Generalised Oldroed-B Flid throgh Poros Medim between Two Infinite Parallel Plates in

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion rocedre (demonstrated with a -D bar element problem) MAE - inite Element Analysis Many slides from this set are originally from B.S. Altan, Michigan Technological U. EA rocedre for Static Analysis.

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

Solving a System of Equations

Solving a System of Equations Solving a System of Eqations Objectives Understand how to solve a system of eqations with: - Gass Elimination Method - LU Decomposition Method - Gass-Seidel Method - Jacobi Method A system of linear algebraic

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method CIVL 7/87 Chater - The Stiffness Method / Chater Introdction to the Stiffness (Dislacement) Method Learning Objectives To define the stiffness matrix To derive the stiffness matrix for a sring element

More information

Objectives: We will learn about filters that are carried out in the frequency domain.

Objectives: We will learn about filters that are carried out in the frequency domain. Chapter Freqency Domain Processing Objectives: We will learn abot ilters that are carried ot in the reqency domain. In addition to being the base or linear iltering, Forier Transorm oers considerable lexibility

More information

Diffraction of light due to ultrasonic wave propagation in liquids

Diffraction of light due to ultrasonic wave propagation in liquids Diffraction of light de to ltrasonic wave propagation in liqids Introdction: Acostic waves in liqids case density changes with spacing determined by the freqency and the speed of the sond wave. For ltrasonic

More information

STUDY OF AC ELECTROOSMOTIC FLOW DEVELOPED BY CO-PLANAR MICROELECTRODE ARRAY IN A SLIT MICROCHANNEL

STUDY OF AC ELECTROOSMOTIC FLOW DEVELOPED BY CO-PLANAR MICROELECTRODE ARRAY IN A SLIT MICROCHANNEL Proceedings of the International Conference on Mechanical Engineering 211 (ICME211 18-2 ecember 211, haka, Bangladesh ICME 11 225 STUY O AC EECTROOSMOTIC OW EVEOPE BY CO-PANAR MICROEECTROE ARRAY IN A SIT

More information

ECON3120/4120 Mathematics 2, spring 2009

ECON3120/4120 Mathematics 2, spring 2009 University of Oslo Department of Economics Arne Strøm ECON3/4 Mathematics, spring 9 Problem soltions for Seminar 4, 6 Febrary 9 (For practical reasons some of the soltions may inclde problem parts that

More information

Higher Maths A1.3 Recurrence Relations - Revision

Higher Maths A1.3 Recurrence Relations - Revision Higher Maths A Recrrence Relations - Revision This revision pack covers the skills at Unit Assessment exam level or Recrrence Relations so yo can evalate yor learning o this otcome It is important that

More information

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only Name : 1 Qadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T ntoine lists the following vector operation statements: R U 1) ST + SR MU ) UT + UR SM 3) RS + RU

More information

International Journal of Physical and Mathematical Sciences journal homepage:

International Journal of Physical and Mathematical Sciences journal homepage: 64 International Jornal of Physical and Mathematical Sciences Vol 2, No 1 (2011) ISSN: 2010-1791 International Jornal of Physical and Mathematical Sciences jornal homepage: http://icoci.org/ijpms PRELIMINARY

More information

Newton s Laws. Why Things Move. Overview. Part

Newton s Laws. Why Things Move. Overview. Part Part I Newton s Laws Overview Why Things Move Each of the seven parts of this book opens with an overview to give yo a look ahead, a glimpse at where yor jorney will take yo in the net few chapters. It

More information

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET)

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET) Theoretical, Nmerical (FEM) and Experimental Analsis of composite cracked beams of different bondar conditions sing vibration mode shape crvatres Pankaj Charan Jena, Daal R. Parhi, G. Pohit 3 Department

More information

2 THE FIRST AND SECOND GENERATION OF THE VK-FILTER

2 THE FIRST AND SECOND GENERATION OF THE VK-FILTER ůma R. he passband Width of the Vold-Kalman Order racking Filter. Sborník vědeckých prací VŠB-U Ostrava řada stroní r. LI 5. č. paper No. 485 pp. 49-54. ISSN - 47. ISBN 8-48-88-X. Jiří ŮMA * HE PASSBAND

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Simplified Identification Scheme for Structures on a Flexible Base

Simplified Identification Scheme for Structures on a Flexible Base Simplified Identification Scheme for Strctres on a Flexible Base L.M. Star California State University, Long Beach G. Mylonais University of Patras, Greece J.P. Stewart University of California, Los Angeles

More information

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10. Correction key 1 D Example of an appropriate method /4 Let x, y be the wind vector (km) y 100, 150 x, y 10, 160 100 x, 150 y 10, 160 100 withot wind with wind 100 + x = 10 and x = 0 150 + y = 160 and y

More information

PROBLEMS

PROBLEMS PROBLEMS------------------------------------------------ - 7- Thermodynamic Variables and the Eqation of State 1. Compter (a) the nmber of moles and (b) the nmber of molecles in 1.00 cm of an ideal gas

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica Visalisations of Gssian and Mean Cratres by Using Mathematica and webmathematica Vladimir Benić, B. sc., (benic@grad.hr), Sonja Gorjanc, Ph. D., (sgorjanc@grad.hr) Faclty of Ciil Engineering, Kačićea 6,

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

Uncertainties of measurement

Uncertainties of measurement Uncertainties of measrement Laboratory tas A temperatre sensor is connected as a voltage divider according to the schematic diagram on Fig.. The temperatre sensor is a thermistor type B5764K [] with nominal

More information