u v u v v 2 v u 5, 12, v 3, 2 3. u v u 3i 4j, v 7i 2j u v u 4i 2j, v i j 6. u v u v u i 2j, v 2i j 9.

Size: px
Start display at page:

Download "u v u v v 2 v u 5, 12, v 3, 2 3. u v u 3i 4j, v 7i 2j u v u 4i 2j, v i j 6. u v u v u i 2j, v 2i j 9."

Transcription

1 Section. Vectors and Dot Prodcts 53 Vocablary Check 1. dot prodct. 3. orthogonal. \ 5. proj PQ F PQ \ ; F PQ \ 1., 1,, 3. 5, 1, 3, 3., 1,, , 5, 1, 5. i j, i j. 3i j, 7i j i j, i 3j 8. i j, i j 9., The reslt is a scalar. 10.,, 3, The reslt is a scalar.,, 3, 3 3, 3,, 8 The reslt is a ector. 1.,, 3,, w 1, 13. w 3 1, 1,, ector,, 3,, w 1, 3w 313 3, 33,, The reslt is a ector. 1.,, 3,, w 1, 15. w 1,, 8 w w 81, The reslt is a scalar. 1,, 8 ector 1., 8 17.,, 3,, w 1, w 3 1 scalar The reslt is a scalar.

2 5 Chapter Additional Topics in Trigonometry 18.,, 3,, w 1, w scalar 19. 5, , i 5j i 1j j i , 0, 0,. 3,,, i j, j cos cos cos arccos i 3j, i j 9. cos i j, i j cos i 3j, 8i j 31. cos i 5j, i j cos i 3j, i 3j cos

3 Section. Vectors and Dot Prodcts cos cos 3 i 3 sin 1 3 i sin cos 1 3 arccos 3 j 1 3 i j 3. j i j cos cos cos i sin i sin j j j i j i j y 3. 7i 5j cos x i 3j, i j cos 3 3 cos 1 10 cos cos 1 10 y cos cos x 37. 5i 5j y 38. 8i 8j cos x i 3j, 8i 3j cos cos cos 7 cos cos 7.9 y 8 10 x

4 5 Chapter Additional Topics in Trigonometry 39. P 1,, Q 3,, R, 5 PQ \,, PR \ 1, 3, QR \ 1, 1 PR \ cos PQ\ PQ \ PR \ 8 10 arccos.57 5 QR \ cos PQ\ Ths, PQ \ QR \ P 3,, Q 1, 7, R 8, 1. PQ \, 11, QR \ 7, 5, PR \ 11,, QP \, 11 PR \ cos PQ\ PQ \ PR \ QP \ cos QR\ QR \ QP \ P 3, 0, Q,, R 0, QP \ 5,, PR \ 3,, QR \,, PQ \ 5, PR \ cos PQ\ PQ \ PR \ QR \ cos QP\ QP \ PR \ P 3, 5, Q 1, 9, R 7, 9 3. PQ \,, QR \ 8, 0, PR \ 10,, QP \, PR \ cos PQ\ PQ \ PR \ QP \ cos QR\ QR \ QP \ cos 10 cos , 50, cos cos 5, , cos 93 cos cos 1 cos , 30, 1, 5 8. and are parallel. 3, 15, 1, Not orthogonal Neither k Not parallel 1 3i j, 5i j k Not parallel 0 Not orthogonal Neither

5 Section. Vectors and Dot Prodcts , i j 51. k Not parallel 0 Not orthogonal Neither i j, i j 5. cos, sin 0 and are orthogonal. sin, cos 0 and orthogonal. are 53.,,, 1 w 1 proj 1 1, 1 8, w w 1, 1 37, , , 1 10, 0, , 10, ,, 1, 55. w 1 proj 01, 0, 0 w w 1, 0, 0,, 0, 0, 0, 3,, 15 w 1 proj 5 9 w w 1 0, 3 5 9, , , 9, 15 5, 15 15, 0, ,,, proj 0 since they are perpendiclar. w 1 proj 1, 1 17 w w 1 3, 1 5, 1 1, , 1 1, 3, Since and are orthogonal, 0 and proj 0. proj 0, since Becase and are orthogonal, the projection of onto is 0. proj w 0 since , , 3 For to be orthogonal to, mst eqal 0. For to be orthogonal to, mst be eqal to 0. Two possibilities: 5, 3 and 5, 3 Two possibilities: 3, 8, 3, i 3 j For and to be orthogonal, mst eqal 0. Two possibilities: 3 i 1 j and 3 i 1 j. 5 i 3j For to be orthogonal to, mst be eqal to 0. Two possibilities: 3i 5 and 3i 5 j j

6 58 Chapter Additional Topics in Trigonometry 3. \ w proj PQ PQ\ where PQ \, 7 and 1,.. P 1, 3, Q 3, 5, i 3j proj PQ \ PQ \ PQ \ PQ\ 3, 7 5 work PQ \ i 3j i j \ w proj PQ 35 PQ\ (a) 150, 300, 15.5, $58,7.50 This gies the total reene that can be earned by selling all of the pans. (b) Increase prices by 5%: 1.05 The operation is scalar mltiplication ,7.50 1, (a) 30, 50, 1.75, The fast food stand sold $ of hambrgers and hot dogs in one month. (b) Increase prices by.5%: 1.05 scalar mltiplication 7. (a) Force de to graity: F 30,000j Unit ector along hill: cos di sin dj Projection of F onto : w 1 proj F F F 30,000 sin d (b) The magnitde of the force is 30,000 sin d. d Force (c) Force perpendiclar to the hill when d 5: Force 30, ,885.8 ponds 8. Force de to graity: Unit ector along hill: Projection of F onto : F 500j cos 10i sin 10j w 1 proj F F F becase is a nit ector, 1 0cos sin sin The magnitde of the force is 937.7, so a force of ponds is reqired to keep the ehicle from rolling down the hill. Force perpendiclar to the hill: Force ponds

7 Section. Vectors and Dot Prodcts w newton-meters 70. work 005 1,000 foot-ponds 71. w cos foot-ponds 7. work cos 3515, ,8,5 newton-meters 73. w cos ,50. foot-ponds 7. work cos F PQ \ cos 05 ponds50 feet 117. foot-ponds 75. False. Work is represented by a scalar. 7. Tre. W F PQ \ 0 if F and PQ \ are orthogonal. 77. (a) (b) (c) 0 and are orthogonal and. 78. (a) proj and are parallel. > 0 cos > 0 0 < 0 cos < 0 < < (b) proj 0 and are orthogonal. 79. In a rhombs,. The diagonals are 80. Let 1, and 1,. and. 1 1, 0 Therefore, the diagonals are orthogonal ii i i1 i9 85. i sin x 3 sin x 0 sin x cos x 3 sin x 0 sin x cos x 3 0 sin x 0 or cos x 3 0 x 0, cos x 3 x, 11

8 570 Chapter Additional Topics in Trigonometry 8. sin x cos x tan x tan x sin x cos x cos x 0 cos x sin x 0 cos x 0 x, 3 sin x 0 sin x tan x tan x 1 tan x tan x1 tan x tan x tan x1 tan x tan x 0 tan x1 tan x 1 0 x, 5, 3, 7 x 5, 7 tan xtan x 0 tan 3 x 0 tan x 0 x 0, 88. cos x 3 sin x 1 sin x 3 sin x 0 sin x 3 sin x 1 0 sin x 1sin x 1 0 sin x 1 0 sin x 1 0 sin x 1 x 7, 11 x 7, 3, 11 sin x 1 x 3 For Exercises 89 9: sin 1 13, in Qadrant IV cos 5 13 cos 5, in Qadrant IV sin sin sin cos cos sin sin 1 13, cos cos 5, sin sin sin cos cos sin cos cos cos sin sin sin 1 5, cos, tan cos 5, sin 7, tan 7 5 tan tan tan 1 tan tan

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only Name : 1 Qadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T ntoine lists the following vector operation statements: R U 1) ST + SR MU ) UT + UR SM 3) RS + RU

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n 12.4 The Cross Prodct 873 12.4 The Cross Prodct In stdying lines in the plane, when we needed to describe how a line was tilting, we sed the notions of slope and angle of inclination. In space, we want

More information

Homework 5 Solutions

Homework 5 Solutions Q Homework Soltions We know that the colmn space is the same as span{a & a ( a * } bt we want the basis Ths we need to make a & a ( a * linearly independent So in each of the following problems we row

More information

Lecture 9: 3.4 The Geometry of Linear Systems

Lecture 9: 3.4 The Geometry of Linear Systems Lectre 9: 3.4 The Geometry of Linear Systems Wei-Ta Ch 200/0/5 Dot Prodct Form of a Linear System Recall that a linear eqation has the form a x +a 2 x 2 + +a n x n = b (a,a 2,, a n not all zero) The corresponding

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Chapter 5 Dot, Inner and Cross Products. 5.1 Length of a vector 5.2 Dot Product 5.3 Inner Product 5.4 Cross Product

Chapter 5 Dot, Inner and Cross Products. 5.1 Length of a vector 5.2 Dot Product 5.3 Inner Product 5.4 Cross Product Chapter 5 Dot Inner and Cross Prodcts 5. Length of a ector 5. Dot Prodct 5.3 Inner Prodct 5.4 Cross Prodct 5. Length and Dot Prodct in R n Length: The length of a ector ( n in R n is gien by n Notes: The

More information

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 CONTENTS INTRODUCTION MEQ crriclm objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 VECTOR CONCEPTS FROM GEOMETRIC AND ALGEBRAIC PERSPECTIVES page 1 Representation

More information

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary Name Chapter 6 Additional Topics in Trigonometry Section 6.1 Law of Sines Objective: In this lesson you learned how to use the Law of Sines to solve oblique triangles and how to find the areas of oblique

More information

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7 754 Chapter 6 Additional Topics in Trigonometry 115. Yo ant to fly yor small plane de north, bt there is a 75-kilometer ind bloing from est to east. a. Find the direction angle for here yo shold head the

More information

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10. Correction key 1 D Example of an appropriate method /4 Let x, y be the wind vector (km) y 100, 150 x, y 10, 160 100 x, 150 y 10, 160 100 withot wind with wind 100 + x = 10 and x = 0 150 + y = 160 and y

More information

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere 12.2 Vectors 12.1 Three Dimensional Coordinate Systems (Reiew) Equation of a sphere x a 2 + y b 2 + (z c) 2 = r 2 Center (a,b,c) radius r 12.2 Vectors Quantities like displacement, elocity, and force inole

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v. Then determine if u and v are orthogonal. 3. u = 9, 3, v = 1, 3 Since, u and v are orthogonal. 6. u = 11i + 7j; v = 7i + 11j Write u and v in component form as Since, u

More information

II. Vector Basics 1. What is the magnitude and direction of """""#?! B What is the magnitude and direction of $% """""#? R

II. Vector Basics 1. What is the magnitude and direction of #?! B What is the magnitude and direction of $% #? R II. Vector Basics 1. What is the magnitde and direction of """""#?! B 8.5 A 3. What is the magnitde and direction of &' """"#? J 12 lb 28 70 K 2. What is the magnitde and direction of $% """""#? R T 4.5

More information

Vectors. Vectors ( 向量 ) Representation of Vectors. Special Vectors. Equal vectors. Chapter 16

Vectors. Vectors ( 向量 ) Representation of Vectors. Special Vectors. Equal vectors. Chapter 16 Vectors ( 向量 ) Chapter 16 2D Vectors A vector is a line which has both magnitde and direction. For example, in a weather report yo may hear a statement like the wind is blowing at 25 knots ( 海浬 ) in the

More information

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. Math c Solutions: Exam 1 Fall 16 1. Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. x tan t x tan t y sec t y sec t t π 4 To eliminate the parameter,

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction.

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction. EQT 101-Engineering Mathematics I Teaching Module CHAPTER 3 : VECTORS 3.1 Introduction Definition 3.1 A ector is a quantity that has both magnitude and direction. A ector is often represented by an arrow

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Frank Luna, September 6, 009 Solutions to Part I Chapter 1 1. Let u = 1, and v = 3, 4. Perform the following computations and

More information

Math The Dot Product

Math The Dot Product Math 213 - The Dot Product Peter A. Perry University of Kentucky August 26, 2018 Homework Webwork A1 is due Wednesday night Re-read section 12.3, pp. 807 812 Begin work on problems 1-37 (odd), 41-51 (odd)

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

MATH 19520/51 Class 2

MATH 19520/51 Class 2 MATH 19520/51 Class 2 Minh-Tam Trinh University of Chicago 2017-09-27 1 Review dot product. 2 Angles between vectors and orthogonality. 3 Projection of one vector onto another. 4 Cross product and its

More information

7.1 Projections and Components

7.1 Projections and Components 7. Projections and Components As we have seen, the dot product of two vectors tells us the cosine of the angle between them. So far, we have only used this to find the angle between two vectors, but cosines

More information

4.4 Moment of a Force About a Line

4.4 Moment of a Force About a Line 4.4 Moment of a orce bot a Line 4.4 Moment of a orce bot a Line Eample 1, page 1 of 3 1. orce is applied to the end of gearshift lever DE. Determine the moment of abot shaft. State which wa the lever will

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information

Vectors and Plane Geometry

Vectors and Plane Geometry Vectors and Plane Geometry Karl Heinz Dovermann Professor of Mathematics University of Hawaii January 7, 0 Preface During the first week of the semester it is difficult to get started with the course

More information

3 Scalar Product. 3.0 The Dot Product. ~v ~w := v 1 w 1 + v 2 w v n w n.

3 Scalar Product. 3.0 The Dot Product. ~v ~w := v 1 w 1 + v 2 w v n w n. 3 Scalar Product Copyright 2017, Gregory G. Smith 28 September 2017 Although vector products on R n are rare, every coordinate space R n is equipped with a binary operation that sends two vectors to a

More information

A vector in the plane is directed line segment. The directed line segment AB

A vector in the plane is directed line segment. The directed line segment AB Vector: A ector is a matrix that has only one row then we call the matrix a row ector or only one column then we call it a column ector. A row ector is of the form: a a a... A column ector is of the form:

More information

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process Worksheet for Lecture Name: Section.4 Gram-Schmidt Process Goal For a subspace W = Span{v,..., v n }, we want to find an orthonormal basis of W. Example Let W = Span{x, x } with x = and x =. Give an orthogonal

More information

Exercise 1a: Determine the dot product of each of the following pairs of vectors.

Exercise 1a: Determine the dot product of each of the following pairs of vectors. Bob Bron, CCBC Dundalk Math 53 Calculus 3, Chapter Section 3 Dot Product (Geometric Definition) Def.: The dot product of to vectors v and n in is given by here θ, satisfying 0, is the angle beteen v and.

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5) Test # Review Math 14 Name (6.5 to 6.7, 10.1 to 10.,and 10.5) Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the product of the complex

More information

11.4 Dot Product Contemporary Calculus 1

11.4 Dot Product Contemporary Calculus 1 11.4 Dot Product Contemporary Calculus 1 11.4 DOT PRODUCT In the previous sections we looked at the meaning of vectors in two and three dimensions, but the only operations we used were addition and subtraction

More information

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRPHICS VECTORS SPRING 216 DR. MICHEL J. RELE INTRODUCTION In graphics, we are going to represent objects and shapes in some form or other. First, thogh, we need to figre ot how to represent

More information

45. The Parallelogram Law states that. product of a and b is the vector a b a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1. a c. a 1. b 1.

45. The Parallelogram Law states that. product of a and b is the vector a b a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1. a c. a 1. b 1. SECTION 10.4 THE CROSS PRODUCT 537 42. Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular. 43.

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.)

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.) Math 141 Name: MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 SPRING 2018 KUNIYUKI 150 POINTS TOTAL: 50 FOR PART 1, AND 100 FOR PART 2 Show all work, simplify as appropriate,

More information

1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors

1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors Objectives kˆz 1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors t < 0 r 0 t > 0 ĵy 3. Determine if Two Vectors Are Parallel 4. Determine if Two Vectors Are Orthogonal 5. Decompose

More information

Math 144 Activity #10 Applications of Vectors

Math 144 Activity #10 Applications of Vectors 144 p 1 Math 144 Actiity #10 Applications of Vectors In the last actiity, yo were introdced to ectors. In this actiity yo will look at some of the applications of ectors. Let the position ector = a, b

More information

POSITION VECTORS & FORCE VECTORS

POSITION VECTORS & FORCE VECTORS POSITION VECTORS & FORCE VECTORS Today s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form, from given geometry. b) Represent a force vector directed along

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4 Math 8 Winter 21 Midterm 2 Review Problems Solutions - 1 1 Evaluate xcos 2 3x Solution: First rewrite cos 2 3x using the half-angle formula: ( ) 1 + cos 6x xcos 2 3x = x = 1 x + 1 xcos 6x. 2 2 2 Now use

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Obliqe Projection. A body is projected from a point with different angles of projections 0 0, 35 0, 45 0, 60 0 with the horizontal bt with same initial speed. Their respective horizontal ranges are R,

More information

7.3. Applications of the Dot Product. Solution. Find the Angle Between Two Vectors. Solution

7.3. Applications of the Dot Product. Solution. Find the Angle Between Two Vectors. Solution 7.3 Applications of the Dot Product The dot product has many applications in mathematics and science. Finding the work done, determining the angle between two vectors, and finding the projection of one

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

Linear Algebra: Homework 3

Linear Algebra: Homework 3 Linear Algebra: Homework 3 Alvin Lin August 206 - December 206 Section.2 Exercise 48 Find all values of the scalar k for which the two vectors are orthogonal. [ ] [ ] 2 k + u v 3 k u v 0 2(k + ) + 3(k

More information

Matrix Multiplication

Matrix Multiplication 3.2 Matrix Algebra Matrix Multiplication Example Foxboro Stadium has three main concession stands, located behind the south, north and west stands. The top-selling items are peanuts, hot dogs and soda.

More information

CHAPTER 5: Analytic Trigonometry

CHAPTER 5: Analytic Trigonometry ) (Answers for Chapter 5: Analytic Trigonometry) A.5. CHAPTER 5: Analytic Trigonometry SECTION 5.: FUNDAMENTAL TRIGONOMETRIC IDENTITIES Left Side Right Side Type of Identity (ID) csc( x) sin x Reciprocal

More information

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same 11.1 Vectors in the Plane 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same direction as. QP a. u =< 1, 2 > b. u =< 1 5, 2 5 > c. u =< 1, 2 > d. u =< 1 5, 2 5 > 2. If u has magnitude

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

INTRODUCTION AND MATHMATICAL Concepts. 1. Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram

INTRODUCTION AND MATHMATICAL Concepts. 1. Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram chapter INTRODUCTION AND MATHMATICAL Concepts Section 1.2 Units Section 1.3 The Role of Units in Problem Solving 1. Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram (b) slug

More information

Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram

Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram chapter INTRODUCTION AND MATHEMATICAL CONCEPTS Section 1. Units Section 1.3 The Role of Units in Problem Solving 1. Which one of the following is an SI base unit? (a) gram (c) newton (e) kilogram (b) slug

More information

Polar Coordinates; Vectors

Polar Coordinates; Vectors 10.5 The Dot Product 1. v i, w i+ (a) v w 1(1) + ( 1)(1) 1 1 0 (b) cos v w 0 1 + ( 1) 1 + 1 0 0 0 90º (c) The vectors are orthogonal.. v i +, w i+ (a) v w 1( 1) +1(1) 1 + 1 0 (b) cos v w 0 1 +1 ( 1) +

More information

Brief Review of Exam Topics

Brief Review of Exam Topics Math 32A Discussion Session Week 3 Notes October 17 and 19, 2017 We ll use this week s discussion session to prepare for the first midterm. We ll start with a quick rundown of the relevant topics, and

More information

b) The trend is for the average slope at x = 1 to decrease. The slope at x = 1 is 1.

b) The trend is for the average slope at x = 1 to decrease. The slope at x = 1 is 1. Chapters 1 to 8 Course Review Chapters 1 to 8 Course Review Question 1 Page 509 a) i) ii) [2(16) 12 + 4][2 3+ 4] 4 1 [2(2.25) 4.5+ 4][2 3+ 4] 1.51 = 21 3 = 7 = 1 0.5 = 2 [2(1.21) 3.3+ 4][2 3+ 4] iii) =

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

6.4 Vectors and Dot Products

6.4 Vectors and Dot Products 6.4 Vectors and Dot Products Copyright Cengage Learning. All rights reserved. What You Should Learn Find the dot product of two vectors and use the properties of the dot product. Find the angle between

More information

MTH 133: Plane Trigonometry

MTH 133: Plane Trigonometry MTH 133: Plane Trigonometry The Trigonometric Functions Right Angle Trigonometry Thomas W. Judson Department of Mathematics & Statistics Stephen F. Austin State University Fall 2017 Plane Trigonometry

More information

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30 Chapter 12 Review Vector MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30 iclicker 1: Let v = PQ where P = ( 2, 5) and Q = (1, 2). Which of the following vectors with the given

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1 OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIEL OF A POLYHERAL BOY WITH LINEARLY INCREASING ENSITY 1 V. POHÁNKA2 Abstract The formla for the comptation of the gravity field of a polyhedral body

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017 Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017 Since we didn t get a chance to discuss parametrized lines last week, we may spend some time discussing those before moving on to the dot

More information

Math 114, Section 003 Fall 2011 Practice Exam 1 with Solutions

Math 114, Section 003 Fall 2011 Practice Exam 1 with Solutions Math 11, Section 003 Fall 2011 Practice Exam 1 with Solutions Contents 1 Problems 2 2 Solution key 8 3 Solutions 9 1 1 Problems Question 1: Let L be the line tangent to the curve r (t) t 2 + 3t + 2, e

More information

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line CHAPTER 6 : VECTORS 6. Lines in Space 6.. Angle between Two Lines 6.. Intersection of Two lines 6..3 Shortest Distance from a Point to a Line 6. Planes in Space 6.. Intersection of Two Planes 6.. Angle

More information

The Cross Product -(10.4)

The Cross Product -(10.4) The Cross Product -(10.4) Questions: What is the definition of the cross product of two vectors? Is it a scalar or vector? What can you say about vectors u and v (all possibilities) if the cross product

More information

10.2,3,4. Vectors in 3D, Dot products and Cross Products

10.2,3,4. Vectors in 3D, Dot products and Cross Products Name: Section: 10.2,3,4. Vectors in 3D, Dot products and Cross Products 1. Sketch the plane parallel to the xy-plane through (2, 4, 2) 2. For the given vectors u and v, evaluate the following expressions.

More information

UNIT 1: SIMILARITY, CONGRUENCE, AND PROOFS. 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. 2 centered at ( 4, 1).

UNIT 1: SIMILARITY, CONGRUENCE, AND PROOFS. 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. 2 centered at ( 4, 1). UNIT 1: SIMILARITY, CONGRUENCE, AND PROOFS 1) Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of 1. centered at ( 4, 1). The dilation is Which statement is true? A. B. C. D. AB B' C'

More information

Name c V2M0W1H7O MKwuYtxaa ]SooUfBt[wEaxrYed alxlkcb.a K NAMlFlH qrniig\hltosf Fr`eVsJeSryvze_dX. -1-

Name c V2M0W1H7O MKwuYtxaa ]SooUfBt[wEaxrYed alxlkcb.a K NAMlFlH qrniig\hltosf Fr`eVsJeSryvze_dX. -1- Precalculus Name c VM0W1H7O MKwuYtxaa ]SooUfBt[wEaxrYed alxlkcb.a K NAMlFlH qrniig\hltosf Fr`eVsJeSryvze_dX. Vectors Test Review Find the exact value of each trigonometric function. 1) cos 15 ) cos 10

More information

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3 Math 36 Exam 3 Multiple Choice Identify the choice that best completes the statement or answers the question.. Find the component form of v if ÄÄ= v 0 and the angle it makes with the x-axis is 50. 0,0

More information

(4) Using results you have studied, show that if x, y are real numbers,

(4) Using results you have studied, show that if x, y are real numbers, Solutions to Homework 4, Math 310 (1) Give a direct proof to show that if a, b are integers which are squares of integers, then ab is the square of an integer. Proof. We show that if a, b are integers

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

R n : The Cross Product

R n : The Cross Product A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler R n : The Cross Product Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Grade: 10 Mathematics Olympiad Qualifier Set: 2

Grade: 10 Mathematics Olympiad Qualifier Set: 2 Grade: 10 Mathematics Olympiad Qualifier Set: 2 ----------------------------------------------------------------------------------------------- Max Marks: 60 Test ID: 22101 Time Allotted: 40 Mins -----------------------------------------------------------------------------------------------

More information

F F. proj cos( ) v. v proj v

F F. proj cos( ) v. v proj v Geometric Definition of Dot Product 1.2 The Dot Product Suppose you are pulling up on a rope attached to a box, as shown above. How would you find the force moving the box towards you? As stated above,

More information

3. Interpret the graph of x = 1 in the contexts of (a) a number line (b) 2-space (c) 3-space

3. Interpret the graph of x = 1 in the contexts of (a) a number line (b) 2-space (c) 3-space MA2: Prepared by Dr. Archara Pacheenburawana Exercise Chapter 3 Exercise 3.. A cube of side 4 has its geometric center at the origin and its faces parallel to the coordinate planes. Sketch the cube and

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL LINEAR IMPULSE AND MOMENTUM On copletion of this ttorial yo shold be able to do the following. State Newton s laws of otion. Define linear

More information

Dot Product August 2013

Dot Product August 2013 Dot Product 12.3 30 August 2013 Dot product. v = v 1, v 2,..., v n, w = w 1, w 2,..., w n The dot product v w is v w = v 1 w 1 + v 2 w 2 + + v n w n n = v i w i. i=1 Example: 1, 4, 5 2, 8, 0 = 1 2 + 4

More information

Geometry Warm Up Right Triangles Day 8 Date

Geometry Warm Up Right Triangles Day 8 Date Geometry Warm Up Right Triangles Day 8 Name Date Questions 1 4: Use the following diagram. Round decimals to the nearest tenth. P r q Q p R 1. If PR = 12 and m R = 19, find p. 2. If m P = 58 and r = 5,

More information

MTH 2310, FALL Introduction

MTH 2310, FALL Introduction MTH 2310, FALL 2011 SECTION 6.2: ORTHOGONAL SETS Homework Problems: 1, 5, 9, 13, 17, 21, 23 1, 27, 29, 35 1. Introduction We have discussed previously the benefits of having a set of vectors that is linearly

More information

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =, SUPPLEMENT I 1. Vectors Definition. A vector is a quantity that has both a magnitude and a direction. A twodimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

P. O. D. Station 2. You already have the real time. You found that with your stop watch.

P. O. D. Station 2. You already have the real time. You found that with your stop watch. P. O. D. Station 2 In Station 2 you have to find the real time (t real ), the real acceleration (a real )and the real force (Force real ). Then you have to find the ideal force, the ideal acceleration,

More information

CHAPTER 10 TRIGONOMETRY

CHAPTER 10 TRIGONOMETRY CHAPTER 10 TRIGONOMETRY EXERCISE 39, Page 87 1. Find the length of side x in the diagram below. By Pythagoras, from which, 2 25 x 7 2 x 25 7 and x = 25 7 = 24 m 2. Find the length of side x in the diagram

More information

Shape Booster 6 Similar Shapes

Shape Booster 6 Similar Shapes Shape Booster 6 Similar Shapes Check: 85T) The two triangles are similar. 5cm y x 37.8cm 8cm 43.2cm a) Work out the size of x. b) Work out the size of y. a) x = 27cm b) y = 7cm Learn: Maths Watch Reference

More information

INTERMEDIATE ALGEBRA REVIEW FOR TEST 3

INTERMEDIATE ALGEBRA REVIEW FOR TEST 3 INTERMEDIATE ALGEBRA REVIEW FOR TEST 3 Evaluate the epression. ) a) 73 (-4)2-44 d) 4-3 e) (-)0 f) -90 g) 23 2-4 h) (-2)4 80 i) (-2)5 (-2)-7 j) 5-6 k) 3-2 l) 5-2 Simplify the epression. Write your answer

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

To: all students going into AP Calculus AB From: PUHSD AP Calculus teachers

To: all students going into AP Calculus AB From: PUHSD AP Calculus teachers To: all students going into AP Calculus AB From: PUHSD AP Calculus teachers Going into AP Calculus, there are certain skills that you have been taught to you over the previous years that we assume you

More information

THE DIFFERENTIAL GEOMETRY OF REGULAR CURVES ON A REGULAR TIME-LIKE SURFACE

THE DIFFERENTIAL GEOMETRY OF REGULAR CURVES ON A REGULAR TIME-LIKE SURFACE Dynamic Systems and Applications 24 2015 349-360 TH DIFFRNTIAL OMTRY OF RULAR CURVS ON A RULAR TIM-LIK SURFAC MIN OZYILMAZ AND YUSUF YAYLI Department of Mathematics ge Uniersity Bornoa Izmir 35100 Trkey

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information