SB Ch 6 May 15, 2014

Size: px
Start display at page:

Download "SB Ch 6 May 15, 2014"

Transcription

1 Warm Up 1

2 Chapter 6: Applications of Trig: Vectors Section 6.1 Vectors in a Plane Vector: directed line segment Magnitude is the length of the vector Direction is the angle in which the vector is pointing a,b (a,b) Recall: direction is measured from the positive x axis counterclockwise Bearing (aka heading) is measure from due north clockwise a,b Component form of a vector Standard Form is the vector from the origin to the point (a,b) 2

3 HMT (head minus tail) Rule: an arrow given initial point (x 1,y 1 ) and end point (x 2,y 2 ) represents the vector x 2 x 1, y 2 y 1. Example: Show that RS & OP are equivalent vectors. Magnitude: denoted v can be found by: v = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 Example: If v = a, b then v = a 2 +b 2 3

4 Example: 4

5 Example: 5

6 Day 1 Homework Page 464 #1-24 mod 3 6

7 Day 2 7

8 Component Form Unit Vector Form 8

9 Example: 9

10 Example: To find magnitude use: To find direction use: 10

11 Example: A DC-10 jet is flying on a bearing of 65 degrees at 500 mph. Find the component form of the velocity of the airplane. Recall bearing is measured differently than direction. Example: A flight is leaving an airport and flying due East. There is a 65 mph wind with bearing 60 degrees. Find the compass heading the plane should follow and determine what the airplane's ground speed will be (assuming speed with no wind is 450 mph). 11

12 12

13 Day 2 Homework: Page 464 #29, 32, 34, 35, 37, 43, 45, 46, 49 13

14 Quick Review 14

15 Example: A flight is leaving an airport and flying due East. There is a 65 mph wind with bearing 60 degrees. Find the compass heading the plane should follow and determine what the airplane's ground speed will be (assuming speed with no wind is 450 mph). Example: An airplane is flying on a compass heading of 170 degrees at 460 mph. A wind is blowing with bearing 200 degrees at 80 mph. 15

16 A boat is traveling on a bearing of 300 degrees at 350 mph. A current is moving at 85 mph with direction 75 degrees. Find the actual velocity of the boat in unit vector form. Then find the actual speed and direction the boat is traveling. 16

17 Section 6.2 Dot Product of Vectors Properties 17

18 EXAMPLE: 18

19 Example: 19

20 Homework Section 6.2 Page 472 #1-22 mod 3, 43, 44,

21 SKIP 21

22 SKIP Vectors are parallel is u = kv for some constant k. Example: Prove that the following vectors are orthogonal 2,3 & -6,4 22

23 DAY 2 Warm Up: Find the dot product. SKIP 23

24 SKIP 24

25 Homework Section 6.2 Day 2 Page 473 #25-31, multiples of 3, SKIP 25

26 Warm Up 26

27 DAY 1 27

28 28

29 29

30 30

31 Day 1 Homework: Page 482 #1-10, odds 31

32 32

33 Example: Projectile Motion A distress flare is shot straight up from a ship's bridge 75 feet above the water with an initial velocity of 76 ft/sec. Graph the flare's height against time, give the height of the flare above water at each time, and simulate the flare's motion for each length of time. a. 1 sec b. 2 sec c. 4 sec d. 5 sec Step 1: State an equation that can be used to model the flare's height above water t-seconds after launch. Step 2: A graph of the flare's height can be found using parametric equations with x 1 = t and y 1 =. (think of this as x being the time, and y being the height with respect to time) 33

34 Day 2: Section 6.3 Simulating Motion Example: Simulating Horizontal Motion Gary walks along a horizontal line (think of it as a number line) with the coordinate of his position (in meters) given by s = -0.1(t 3-20t t - 85) where 0 t 12 Use parametric equations and a calculator to simulate his motion. Estimate the times when Gary changes direction. Answer: x 1 = and choose y 1 = 5 (to give space to display this motion) As t values increase, notice the x values are. This means that Gary must have changed direction during his walk. To simulate this, x 1 stays the same for x 2, however, y's equation would change to y 2 =. Trace your graph to see where the spots are that Gary changes direction. 34

35 Notes: Initial velocity can be represented by the vector v = <v o cosθt, v o sinθ> Path of the object modeled by parametic equations: x = (v o cosθ)t & y = -16t 2 + (v o sinθ)t + y o Hitting a Baseball Kevin hits a baseball at 3 ft above the ground with an initial speed of 150 ft/sec at an angle of 18 degrees with the horizontal. Will the ball clear a 20-ft wall that is 400 ft away? (Remember: You need to change up your window settings to get a nice picture) 35

36 Review: Riding on a Ferris Wheel Example # 10 page 481 in book Homework Section 6.3 cont. Page 482 #31, 37-40, 43, 44, 46, 51,

37 1. Find the dot product of <3,-5> and <-6, -2>. 2. With the given vectors in #1, find the angle between them. 3. Vector v has magnitude 8 with bearing 70 degrees. Show the component form of vector v. 37

38 Warm Up 38

39 39

40 (this is notation for showing all solutions (not just 0-2π)) Converting between Polar and Rectangular Coordinates 40

41 Examples *Remember to check for the quadrants where tanθ is positive vs negative. 41

42 Examples 42

43 Section 6.4 Homework Page 492 # 1-30 mod 3; odd, 51, 52 43

44 Warm Up 3x + 4y = 2 44

45 45

46 What is the difference between r =a ± b sin θ and r =a ± b cos θ? r = sinθ r = cosθ r = 2 3 sinθ r = 2 3 cosθ 46

47 r = cos θ r = 1 4 sin θ r = 2 2 sin θ r = cos θ 47

48 Spiral Graphs r = θ windows: θ: by 6 x & y: by 100 *changing window settings will alter how many spirals 48

49 49

50 Homework Section 6.5 Page 500 #7 12 & pg 493 #

51 51

52 Warm Up Answers 52

53 53

54 54

55 55

56 Example: (exact values) 56

57 Example: 57

58 58

59 Homework Day 1: Page 511 #1 30 odds 59

60 DAY SKIP 2 THIS SECTION 60

61 SKIP Example: 61

62 SKIP 62

63 SKIP Example: 63

64 Homework Day 2: Page 511 #31 56 odds, SKIP 64

65 65

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

A unit vector in the same direction as a vector a would be a and a unit vector in the

A unit vector in the same direction as a vector a would be a and a unit vector in the In the previous lesson we discussed unit vectors on the positive x-axis (i) and on the positive y- axis (j). What is we wanted to find other unit vectors? There are an infinite number of unit vectors in

More information

9.5 Parametric Equations

9.5 Parametric Equations Date: 9.5 Parametric Equations Syllabus Objective: 1.10 The student will solve problems using parametric equations. Parametric Curve: the set of all points xy,, where on an interval I (called the parameter

More information

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1 VECTORS Section 6.3 Precalculus PreAP/Dual, Revised 2017 Viet.dang@humbleisd.net 10/11/2018 11:41 PM 6.3: Vectors in the Plane 1 DEFINITIONS A. Vector is used to indicate a quantity that has both magnitude

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Unit 10 Parametric and Polar Equations - Classwork

Unit 10 Parametric and Polar Equations - Classwork Unit 10 Parametric and Polar Equations - Classwork Until now, we have been representing graphs by single equations involving variables x and y. We will now study problems with which 3 variables are used

More information

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Unit 1 Laws of Sines and Cosines Unit 4 Polar Equations Law of Cosines Law of Sines Ambiguous Case Sine Area Formula Hero s Formula Applications

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

Appendix D: Algebra and Trig Review

Appendix D: Algebra and Trig Review Appendix D: Algebra and Trig Review Find the domains of the following functions. x+2 x 2 5x+4 3 x 4 + x 2 9 7 x If f(x) = x 3, find f(8+h) f(8) h and simplify by rationalizing the numerator. 1 Converting

More information

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 2. For Cosine Rule of any triangle ABC, c² is equal to A.

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Special Angles 1 Worksheet MCR3U Jensen

Special Angles 1 Worksheet MCR3U Jensen Special Angles 1 Worksheet 1) a) Draw a right triangle that has one angle measuring 30. Label the sides using lengths 3, 2, and 1. b) Identify the adjacent and opposite sides relative to the 30 angle.

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Pre Calculus with Mrs. Bluell

Pre Calculus with Mrs. Bluell Welcome to Pre Calculus with Mrs. Bluell Quick Review Today's Topics include Interval Notation Exponent Rules Quadrants Distance Formula Midpoint Formula Circle Formula Alligator Mouths to Interval Notation

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Physics 121. Tuesday, January 29, 2008.

Physics 121. Tuesday, January 29, 2008. Physics 121. Tuesday, January 29, 2008. This is where your instructor grew up. Schiphol (Amsterdam Airport) = cemetery of ships. Physics 121. Tuesday, January 29, 2008. Topics: Course announcements Quiz

More information

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10.

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10. Unit Circle Class Work Find the exact value of the given expression. 1. cos π 3. sin 7π 3. sec π 3. tan 5π 6 5. cot 15π 6. csc 9π 7. Given the terminal point ( 3, 10 ) find tanθ 7 7 8. Given the terminal

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

Two-Dimensional Kinematics: Heading North (Solutions)

Two-Dimensional Kinematics: Heading North (Solutions) Two-Dimensional Kinematics: Heading North (Solutions) You are the navigator of a TWA flight scheduled to fly from New Orleans due north to St. Louis, a distance of 673 miles. Your instruments tell you

More information

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE A Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS (Brown Book) ASSIGNMENT DUE V 1 1 1/1 Practice Set A V 1 3 Practice Set B #1 1 V B 1

More information

PreCalculus Second Semester Review Chapters P-3(1st Semester)

PreCalculus Second Semester Review Chapters P-3(1st Semester) PreCalculus Second Semester Review Chapters P-(1st Semester) Solve. Check for extraneous roots. All but #15 from 1 st semester will be non-calculator. P 1. x x + 5 = 1.8. x x + x 0 (express the answer

More information

Concept Category 4 (textbook ch. 8) Parametric Equations

Concept Category 4 (textbook ch. 8) Parametric Equations Concept Category 4 (textbook ch. 8) Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations.

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

In 1-D, all we needed was x. For 2-D motion, we'll need a displacement vector made up of two components: r = r x + r y + r z

In 1-D, all we needed was x. For 2-D motion, we'll need a displacement vector made up of two components: r = r x + r y + r z D Kinematics 1. Introduction 1. Vectors. Independence of Motion 3. Independence of Motion 4. x-y motions. Projectile Motion 3. Relative motion Introduction Using + or signs was ok in 1 dimension but is

More information

3.4 Solving Quadratic Equations by Completing

3.4 Solving Quadratic Equations by Completing .4. Solving Quadratic Equations by Completing the Square www.ck1.org.4 Solving Quadratic Equations by Completing the Square Learning objectives Complete the square of a quadratic expression. Solve quadratic

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

WebAssign Assignment #2: Chapter 2.1 (Homework)

WebAssign Assignment #2: Chapter 2.1 (Homework) WebAssign Assignment #2: Chapter 2.1 (Homework) Current Score : / 45 Due : hursday, October 8 2015 11:59 PM PD Jonah Ostroff Math124A15, section, all 2015 Instructor: Jonah Ostroff 1. /10 pointsscalce7

More information

8-2 Vectors in the Coordinate Plane

8-2 Vectors in the Coordinate Plane 37. ROWING Nadia is rowing across a river at a speed of 5 miles per hour perpendicular to the shore. The river has a current of 3 miles per hour heading downstream. a. At what speed is she traveling? b.

More information

Section 6.1 Sinusoidal Graphs

Section 6.1 Sinusoidal Graphs Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle We noticed how the x and y values

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

Homework due Nov 28 Physics

Homework due Nov 28 Physics Homework due Nov 28 Physics Name Base your answers to questions 1 through 4 on the information and vector diagram below and on your knowledge of physics. A hiker starts at point P and walks 2.0 kilometers

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

Math 1720 Final Exam REVIEW Show All work!

Math 1720 Final Exam REVIEW Show All work! Math 1720 Final Exam REVIEW Show All work! The Final Exam will contain problems/questions that fit into these Course Outcomes (stated on the course syllabus): Upon completion of this course, students will:

More information

PART A: Solve the following equations/inequalities. Give all solutions. x 3 > x + 3 x

PART A: Solve the following equations/inequalities. Give all solutions. x 3 > x + 3 x CFHS Honors Precalculus Calculus BC Review PART A: Solve the following equations/inequalities. Give all solutions. 1. 2x 3 + 3x 2 8x = 3 2. 3 x 1 + 4 = 8 3. 1 x + 1 2 x 4 = 5 x 2 3x 4 1 4. log 2 2 + log

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

; approximate b to the nearest tenth and B or β to the nearest minute. Hint: Draw a triangle. B = = B. b cos 49.7 = 215.

; approximate b to the nearest tenth and B or β to the nearest minute. Hint: Draw a triangle. B = = B. b cos 49.7 = 215. M 1500 am Summer 009 1) Given with 90, c 15.1, and α 9 ; approimate b to the nearest tenth and or β to the nearest minute. Hint: raw a triangle. b 18., 0 18 90 9 0 18 b 19.9, 0 58 b b 1.0, 0 18 cos 9.7

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator Solve. Express answer using interval notation where appropriate. Check for extraneous solutions. P3 1. x x+ 5 1 3x = P5.

More information

Math 2 1. Lesson 4-5: Completing the Square. When a=1 in a perfect square trinomial, then. On your own: a. x 2 18x + = b.

Math 2 1. Lesson 4-5: Completing the Square. When a=1 in a perfect square trinomial, then. On your own: a. x 2 18x + = b. Math 1 Lesson 4-5: Completing the Square Targets: I can identify and complete perfect square trinomials. I can solve quadratic equations by Completing the Square. When a=1 in a perfect square trinomial,

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Ch.3 Scalars & Vectors

Ch.3 Scalars & Vectors Ch.3 Scalars & Vectors Scalar: e.g. Vector: e.g. Vector Notation: using vector A. A or A (text books bold) (writing on paper) On paper, vectors are represented as with magnitude (size) and direction. 25m/s

More information

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and 1. Starting at the same spot on a circular track that is 80 meters in diameter, Hayley and Kendall run in opposite directions, at 300 meters per minute and 240 meters per minute, respectively. They run

More information

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p.

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p. Unit 5 ICM/AB Applications of the Derivative Fall 2016 Nov 4 Learn Optimization, New PS up on Optimization, HW pg. 216 3,5,17,19,21,23,25,27,29,33,39,41,49,50 a,b,54 Nov 7 Continue on HW from Nov 4 and

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009 Newton 3 & Vectors Action/Reaction When you lean against a wall, you exert a force on the wall. The wall simultaneously exerts an equal and opposite force on you. You Can OnlyTouch as Hard as You Are Touched

More information

Section 5.1 Exercises

Section 5.1 Exercises Section 5.1 Circles 79 Section 5.1 Exercises 1. Find the distance between the points (5,) and (-1,-5). Find the distance between the points (,) and (-,-). Write the equation of the circle centered at (8,

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

1 x. II. CHAPTER 2: (A) Graphing Rational Functions: Show Asymptotes using dotted lines, Intercepts, Holes(Coordinates, if any.)

1 x. II. CHAPTER 2: (A) Graphing Rational Functions: Show Asymptotes using dotted lines, Intercepts, Holes(Coordinates, if any.) FINAL REVIEW-014: Before using this review guide be sure to study your test and quizzes from this year. The final will contain big ideas from the first half of the year (chapters 1-) but it will be focused

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION NON-CALCULATOR PORTION Find four solutions to each of the following; write your answer in 1. 2. 3. 4. 5. 6. radians: Find the value of each of the following: 7. ( ) 8. 9. ( ) 10. 11. 12. 13. ( ) Find four

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

Trigonometry Final Exam Review

Trigonometry Final Exam Review Name Period Trigonometry Final Exam Review 2014-2015 CHAPTER 2 RIGHT TRIANGLES 8 1. Given sin θ = and θ terminates in quadrant III, find the following: 17 a) cos θ b) tan θ c) sec θ d) csc θ 2. Use a calculator

More information

Chapter 6 Additional Topics in Trigonometry

Chapter 6 Additional Topics in Trigonometry Chapter 6 Additional Topics in Trigonometry Overview: 6.1 Law of Sines 6.2 Law of Cosines 6.3 Vectors in the Plan 6.4 Vectors and Dot Products 6.1 Law of Sines What You ll Learn: #115 - Use the Law of

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places.

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places. Chapter 6 Practice Test Find the radian measure of the angle with the given degree measure. (Round your answer to three decimal places.) 80 Find the degree measure of the angle with the given radian measure:

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

Vector Geometry Final Exam Review

Vector Geometry Final Exam Review Vector Geometry Final Exam Review Problem 1. Find the center and the radius for the sphere x + 4x 3 + y + z 4y 3 that the center and the radius of a sphere z 7 = 0. Note: Recall x + ax + y + by + z = d

More information

Unit 3 Right Triangle Trigonometry - Classwork

Unit 3 Right Triangle Trigonometry - Classwork Unit 3 Right Triangle Trigonometry - Classwork We have spent time learning the definitions of trig functions and finding the trig functions of both quadrant and special angles. But what about other angles?

More information

5.1: Angles and Radian Measure Date: Pre-Calculus

5.1: Angles and Radian Measure Date: Pre-Calculus 5.1: Angles and Radian Measure Date: Pre-Calculus *Use Section 5.1 (beginning on pg. 482) to complete the following Trigonometry: measurement of triangles An angle is formed by two rays that have a common

More information

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean MATH 41 Sections 5.1-5.4 Fundamental Identities Reciprocal Quotient Pythagorean 5 Example: If tanθ = and θ is in quadrant II, find the exact values of the other 1 trigonometric functions using only fundamental

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis.

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis. 1 Section 6.1 I. Definitions Angle Formed by rotating a ray about its endpoint. Initial side Starting point of the ray. Terminal side- Position of the ray after rotation. Vertex of the angle- endpoint

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Chapter 1E - Complex Numbers

Chapter 1E - Complex Numbers Fry Texas A&M University Math 150 Spring 2015 Unit 4 20 Chapter 1E - Complex Numbers 16 exists So far the largest (most inclusive) number set we have discussed and the one we have the most experience with

More information

Chapter 4 Kinematics II: Motion in Two and Three Dimensions

Chapter 4 Kinematics II: Motion in Two and Three Dimensions Chapter 4 Kinematics II: Motion in Two and Three Dimensions Demonstrations: 1) Ball falls down and another falls out 2) Parabolic and straight line motion from two different frames. The truck with a dropping

More information

TEK: P.3E Use trigonometry in mathematical and real-world problems, including directional bearing

TEK: P.3E Use trigonometry in mathematical and real-world problems, including directional bearing Precalculus Notes 4.8 Applications of Trigonometry Solving Right Triangles TEK: P.3E Use trigonometry in mathematical and real-world problems, including directional bearing Page 1 link: http://www.schooltube.com/video/d0e919b807644adaa500

More information

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places.

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places. Quadratic Formula - Key Background: So far in this course we have solved quadratic equations by the square root method and the factoring method. Each of these methods has its strengths and limitations.

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 39 Outline 1 Applications

More information

Bill s ball goes up and comes back down to Bill s level. At that point, it is

Bill s ball goes up and comes back down to Bill s level. At that point, it is ConcepTest 2.1 Up in the Air Alice and Bill are at the top of a cliff of height H.. Both throw a ball with initial speed v 0, Alice straight down and Bill straight up. The speeds of the balls when they

More information

CHAPTER 2: VECTOR COMPONENTS DESCRIBE MOTION IN TWO DIMENSIONS

CHAPTER 2: VECTOR COMPONENTS DESCRIBE MOTION IN TWO DIMENSIONS CHAPTER 2: VECTOR COMPOETS DESCRIBE MOTIO I TWO DIMESIOS 2.1 Vector Methods in One Dimension Vectors may be pictured with sketches in which arrows represent quantities such as displacement, force and velocity.

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1 Physics 125: Classical Physics A 1 Practice Problems for Midterm Exam 1 Problem 1 The Figure 1 depicts velocity as a function of time for a short run. Find: a) The acceleration at t = 5 seconds. b) The

More information

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then.

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then. Announcements: 2D Kinematics CAPA due at 10pm tonight There will be the third CAPA assignment ready this evening. Chapter 3 on Vectors Note not covering scalar product or vector product right now we will

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information