BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

Size: px
Start display at page:

Download "BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14."

Transcription

1 For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having direction opposite of u. 8. Are the vectors u and s orthogonal? Why or why not? 9. Find wt = 5 7. Find a unit vector to u = (,,3) and v = (5,3,). i k? 3. Find the area of the parallelogram having AB and AC as adjacent sides: A(,,3), B(,4,), C( 3,,7) 4. Solve: 5xyz x3yz 4x 6y 3z 3 5. Graph the ordered triple (not vector!) (3,,5) using the box method. 6. Kathy walks 5 blocks west along a vacant lot and then blocks south to Alice s house. Annie starts at the same point and walks diagonally through the vacant lot coming out at the same point as Alice. If Kathy walked 5 feet west, how far did Annie walk? 7. Write the vector ( 6, 3) as a linear combination of i and j 8. Write t ( 8, 9) as a linear combination of u (, ) and v (6,3) 9. Write t ( 3, ) as a linear combination of u ( 5, ) and v (,) 5 0. Write t (,) 9 as a linear combination of u (,) 3 and v (, 3 ). Find a vector with norm 0 and in the opposite direction of u ( 5, ). Find a vector with same magnitude as u ( 5, ) but in the opposite direction of u 3. A pilot wants his groundspeed to be 60 mph on a bearing of 80. An east wind is blowing at 65 mph. What should his airspeed and heading be so that the wind will blow him back onto his intended course? 4. Find the volume of the parallelepiped whose edges are u ( 3,,6), v (4,,5), and w (,,7). 5. Points A(,5,6), B(5,,) and C(8,,6) are given. Find a vector perpendicular to the plane ABC going through point A. 6. Find the area of the parallelogram whose consecutive sides are the vectors ( 5,7,) and (3,4,) 7. Find the angle between the vectors ( 4,5,6) and (,,). 8. A plane takes off from Lake Arrowhead airport traveling 300 mph on a bearing of 00 degrees. A south wind is blowing (toward the north) at 5 miles per hour. Find the groundspeed and true course of the plane. Revised: 5/9/03

2 9. A pilot is flying at 68 mph. She wants her flight path to be on a bearing of 57. The wind is blowing from the north at 37. miles per hour. On what bearing should she fly to have the wind blow her plane on to course? 30. A plane is headed due south with an airspeed of 9 mph. A wind from a heading of 78 is blowing at 3 mph. Find the groundspeed and resulting bearing of the plane. Resolve the following forces into component form: lbs. at 0 above horizontal 3. 3 mph on a bearing of 0 Find: a) The resultant of F and F in component form. b) The magnitude and direction (as a bearing) of the resultant from (a) 33. F = (4, 5) F = (3,6) 34. F = ( 6, 30) F = (0, 4) Use the dot product formula u v u v cos to find the measure of the angle between u and v. 35. u = (4,, ) v = ( 5, 8, 6) 36. Find the angle between F and F in problem # u = (8, 3) v = (5, 7) Use the vector cross product to find the area of the triangle ABC whose vertices are given. (Area of parallelogram = u v ) Hint: Resolve AB and AC into component form and find the area of the parallelogram. 38. A( 8, 3, 0) B(,, 5) C(4, 9, ) 39. A(4,, 6) B (5,, 4) C(, 0, 6) Find the volume of the parallelepiped whose edges are the vectors u, v, and w 40. u = (3,, 3) v = (, 4, ) w = (,, ) Write the vector t as a linear combination of u (,5) and v (3, ) 3 4. t = (8, 7) 4. t =, 43. Find the vector with length 8 in the same direction as v = 7,,. Verify that its length is At what bearing and speed would a pilot head if he wants to fly due north at 345 mph when a 40 mph west wind is blowing? 45. A Major League baseball diamond is a square having 90 ft. sides. If the pitcher stands 60 feet 6 inches from home plate, how far is he from nd base? 46. Jim can swim at a rate of 3 mph. If he heads for a point directly across a river in which the current is 0 mph, by how many degrees does the direction in which he actually swims differ from his intended direction? If the river is 3 yards wide, will he make it across before reaching the falls that are yards downstream? 47. In a naval maneuver, two ships rendezvous at point A. One then proceeds east 0 miles and north 4 miles to point B. At what bearing should the second ship head to meet the first ship at point B? Use the formula Work = F d cos to find the work done (in joules) by the force F, with given magnitude and direction, in moving an object the given distance at the given angle. (F is the force vector, d is the direction vector, is the angle between F and d) 48. force of 5 N at 45 along a ramp 60 meters long at force of 9 N at 0 along a ramp 00 meters long at force of 5 N at 4 up a vertical cable a distance of 5 meter. 5. force of 4.36 N at 8 up a vertical cable a distance of meter. Draw a figure to solve each of the following problems on a inclined plane. 5. What is the weight of a car sitting on a 4 slope if the force required to push the car up the hill is 750 pounds.? 53. What is the force required to push a 40 pound lawn mower up a hill inclined at 8? Revised: 5/9/03

3 54. A 3000 pound car is sitting on a slope. Find the magnitude of the force required to push the car up the slope and the magnitude of the force holding the car on the slope? 55. Two men push a 00 pound box up a ramp. Each man pushes with a force of 75 pounds in the direction of the incline of the ramp, and the box just moves up the ramp. At what angle is the ramp inclined? 56. Find the amount of work done by a force F of N at 50 in moving a box of apples 30 meters up a ramp inclined at 0 Solve each of the following using vectors. 57. Two forces of 69 N and 43 N acts at a point. The resultant force is 786 N. Find the angle between the forces. 58. Three forces acting at a point are in equilibrium. The forces are 980 lbs, 760 lbs. and 0 lbs. Find the angles between the forces ( to the nearest minute) 59. A force of 76 lbs. Makes an angle of 7850 with a second force. The resultant of the two forces makes an angle of 40 with the first force. Find the magnitude of the second force and the resultant. 60. A force of 8.7 lbs. makes an angle of 40 with a second force. The resultant of the two forces makes an angle of 340 with the first force. Find the magnitude of the resultant. 6. A crate is supported by two ropes. One rope makes an angle of 460 with horizontal and has a tension of 89.6 lbs. on it. The other rope is horizontal. Find the weight of the crate and the tension in the horizontal rope. 6. Two people are carrying a box, one on each side of the box. One person exerts a force of 50 lbs. at an angle of 6.4 with horizontal. The other person exerts a force 4 lbs. at an angle of 54.9with horizontal. Find the weight of the box. 63. Two tugboats are pulling a disabled speed boat into port with forces of 40 lbs. ad 480 lbs. The angle between these forces is 8.. Find the direction and magnitude of the equilibrant. 64. If u ( 4,5) and v (4,0), find uv 65. If u (6,5), v ( 7, ) and t ( 3, 5), find 3u3( t v) 66. If P(,3, 4) and Q (7,0, ), find the midpoint of PQ 67. If P(,3, 4) and Q (7,0, ), find PQ 68. If A(0,0,), B(3,4,0) and C ( 4,3,0), is ABC isosceles, scalene or equilateral? Why? 69. If u (3, 4) and w(,), then find the norm of 3w u 70. Are the following vectors orthogonal? (3,4,) and (4,, 4) 7. Find the measure of the angle between ( 3, 3, 6) and (4,, ) to the nearest tenth. 7. Find k so that the given vectors are perpendicular: (5,8) and (, k) 73. Write the vector (6, 3) as a linear combinaon of i and j. 74. Write t ( 8, 9) as a linear combination of u (, ) and v (6,3) 75. Write t ( 3,) as a linear combination of u (,5) and v (5,) 76. Write t (, 9) as a linear combination of u (,3) and v (, 3) 77. Find a vector with norm 0 and in the opposite direction of u (,5) 78. Find the vector with same magnitude as u (,5) but in the opposite direction ofu For each of the following let u ( 8,6), v (5,), s (3, 4), w(,3,5), t (,, 4) 79. Find w 80. Find u 8. Find 3u v 8. Find u 83. Find v 7u 84. Find 85. wt 86. u v u 87. Are u and s orthogonal? Why or why not? 88. Find the measure of the angle between s and v to the nearest tenth. 89. Find w t Revised: 5/9/03

4 90. Find the area of the parallelogram with sides w and t 9. An airplane takes off on a bearing of 80 and airspeed of 350 mph. A north wind is blowing at 35 mph. Find the groundspeed and true course of the plane. 9. Two forces act on the same point. One is force of 30 N at 45. The other is a force of 40 N at 0. Find the magnitude and direction of the resultant force. 93. Three forces of 4 lbs, 0 lbs and 0 lbs are in equilibrium. Find the measure of the angle between the: A) 4 lb force and the 0 lb. force. B) 4 lb force and the 0 lb force C) 0 lb force and the 0 lb. force. 94. A pilot wants his groundspeed to be 60 mph on a bearing of 80. An east wind is blowing at 65 mph. What should his airspeed and heading be so that the wind will blow him back onto his intended course? 95. Find the volume of the parallelepiped whose edges are u ( 3,,6), v (4,,5), and w(,,7). 96. Points A(,5,6), B(5,,) and C(8,,6) are given. Find a vector perpendicular to the plane ABC going through point A. 97. Find the area of the parallelogram whose consecutive sides are the vectors ( 5,7,) and (3,4,) 98. Find the angle between the vectors ( 4,5,6) and (,,). Revised: 5/9/03

5 ANSWERS:. 35., ,4, , 3 3 4, No. dp = ,,,. j ,, ft i 3 j 8. t = 3 v t u v 0. t u v., mph 5. ( 5, 30, 33)., 5 (or any scalar multiple of this) mph, 95.4º º mph, 86.5º 3. (87.94, 68.40) 3. (305.8, 64.87) on a bearing of 73.44º on a bearing of º º º 73.9º units units units 3 4. t 3u4v 4. t v ,, mph, 353.4º ft. from nd base yards º joules joules joules joules lbs lbs. 54. Force to push the car up the hill: lbs. Force to keep the car on the º joules º hill: lbs º, 4.49º, 6.6º 59. F :89.59 lbs, r: 8.57 lbs lbs 6. W: 64.8 lbs T: 6.9 lbs lbs lbs 67.º from 480 lb force 64.6º from 40 lb force 64. (,0) 65. (30, 6) ,, isosceles orthogonal i 3j 74. t = 3v 75. t = 4 u 7 v t u v 77., (, 5) ( 6,) 8. ( 34, 6) , ( 7, 6,7) 93. a) 53. b) c) 54.5 Revised: 5/9/03

6 96. ( 5, 30, 33) (or any scalar multiple of this vector) Revised: 5/9/03

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc. 7 Applications of Trigonometry and Vectors Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 7.4 Geometrically Defined Vectors and Applications Basic Terminology The Equilibrant Incline Applications

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1 Introduction Law of Sines Precalculus 6.1 In this section, we will solve oblique triangles triangles that have no right angles. As standard notation, the angles of a triangle are labeled A, B, and C, and

More information

8-2 Vectors in the Coordinate Plane

8-2 Vectors in the Coordinate Plane 37. ROWING Nadia is rowing across a river at a speed of 5 miles per hour perpendicular to the shore. The river has a current of 3 miles per hour heading downstream. a. At what speed is she traveling? b.

More information

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side. Vectors EXAM review Problem 1 = 8 and = 1 a) Find the net force, assume that points North, and points East b) Find the equilibrant force 2 = 15, = 7, and the angle between and is 60 What is the magnitude

More information

Standardized Test Practice - Cumulative, Chapters What is the value of x in the figure below?

Standardized Test Practice - Cumulative, Chapters What is the value of x in the figure below? 1. What is the value of x in the figure below? 2. A baseball diamond is a square with 90-ft sides. What is the length from 3rd base to 1st base? Round to the nearest tenth. A 22.5 B 23 C 23.5 D 24 Use

More information

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE

b g 6. P 2 4 π b g b g of the way from A to B. LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON ASSIGNMENT DUE A Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS (Brown Book) ASSIGNMENT DUE V 1 1 1/1 Practice Set A V 1 3 Practice Set B #1 1 V B 1

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

Use a calculator to find the value of the expression in radian measure rounded to 2 decimal places. 1 8) cos-1 6

Use a calculator to find the value of the expression in radian measure rounded to 2 decimal places. 1 8) cos-1 6 Math 180 - chapter 7 and 8.1-8. - New Edition - Spring 09 Name Find the value of the expression. 1) sin-1 0.5 ) tan-1-1 ) cos-1 (- ) 4) sin-1 Find the exact value of the expression. 5) sin [sin-1 (0.7)]

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

A unit vector in the same direction as a vector a would be a and a unit vector in the

A unit vector in the same direction as a vector a would be a and a unit vector in the In the previous lesson we discussed unit vectors on the positive x-axis (i) and on the positive y- axis (j). What is we wanted to find other unit vectors? There are an infinite number of unit vectors in

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information

Chapter 7 Test. 2. In triangle ABC, A = 60, and side c = 20 ft. How many triangles can be formed if side a = 16 ft? A) 0 B) 1 C) 2 D) 3

Chapter 7 Test. 2. In triangle ABC, A = 60, and side c = 20 ft. How many triangles can be formed if side a = 16 ft? A) 0 B) 1 C) 2 D) 3 Name Chapter 7 Test 1. Solve the triangle using the law of sines. Round to the nearest tenth. side a = 12 m A = 19 B = 79 What are the lengths of sides b and c? A) b = 35.5 m, c = 35.9 m C) b = 36.2 m,

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Skills Practice Skills Practice for Lesson 14.1

Skills Practice Skills Practice for Lesson 14.1 Skills Practice Skills Practice for Lesson 1.1 Name Date By Air and By Sea Introduction to Vectors Vocabulary Match each term to its corresponding definition. 1. column vector notation a. a quantity that

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Polar Coordinates; Vectors

Polar Coordinates; Vectors 10.5 The Dot Product 1. v i, w i+ (a) v w 1(1) + ( 1)(1) 1 1 0 (b) cos v w 0 1 + ( 1) 1 + 1 0 0 0 90º (c) The vectors are orthogonal.. v i +, w i+ (a) v w 1( 1) +1(1) 1 + 1 0 (b) cos v w 0 1 +1 ( 1) +

More information

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors Name: Period: Pre-Cal AB: Unit 6: Vectors Monday Tuesday Block Friday 13 14 15/16 PSAT/ASVAB 17 Pep Rally No School Solving Trig Equations TEST Vectors Intro 20 21 22/23 24 End of 9-wks Pep-Rally Operations

More information

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION NON-CALCULATOR PORTION Find four solutions to each of the following; write your answer in 1. 2. 3. 4. 5. 6. radians: Find the value of each of the following: 7. ( ) 8. 9. ( ) 10. 11. 12. 13. ( ) Find four

More information

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009 Newton 3 & Vectors Action/Reaction When you lean against a wall, you exert a force on the wall. The wall simultaneously exerts an equal and opposite force on you. You Can OnlyTouch as Hard as You Are Touched

More information

Vectors & scalars: Force as vector Review

Vectors & scalars: Force as vector Review Vectors & scalars: Force as vector Review Name 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 39 Outline 1 Applications

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

VECTORS REVIEW NAME:

VECTORS REVIEW NAME: VECTORS REVIEW NAME: 1. The vector diagram below represents two forces, F 1 and F 2 simultaneously acting on an object. Which vector best represents the resultant of the two forces? 2. A child walks 5.0

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

Homework due Nov 28 Physics

Homework due Nov 28 Physics Homework due Nov 28 Physics Name Base your answers to questions 1 through 4 on the information and vector diagram below and on your knowledge of physics. A hiker starts at point P and walks 2.0 kilometers

More information

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction)

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction) Pre-Calculus Section 10.3: Vectors & Their Applications (Part I) 1. Vocabulary (Summary): 4. Algebraic Operations on Vectors: If u = Scalar: A quantity possessing only magnitude (such weight or length

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 4 Main points of last lecture Scalars vs. Vectors Vectors A: (A x, A y ) or A & θ Addition/Subtraction Projectile Motion X-direction: a x = 0 (v x = constant)

More information

act concurrently on point P, as shown in the diagram. The equilibrant of F 1

act concurrently on point P, as shown in the diagram. The equilibrant of F 1 Page 1 of 10 force-friction-vectors review Name 12-NOV-04 1. A 150.-newton force, F1, and a 200.-newton force, F 2, are applied simultaneously to the same point on a large crate resting on a frictionless,

More information

Chapter 6 REVIEW. 6.1 Introduction to Vectors. 6.3 Multiplying a Vector by a Scalar. 6.2 Addition and Subtraction of Vectors

Chapter 6 REVIEW. 6.1 Introduction to Vectors. 6.3 Multiplying a Vector by a Scalar. 6.2 Addition and Subtraction of Vectors Chapter 6 REVIEW 6.1 Introduction to Vectors 1. For which of the following situations would a vector be a suitable mathematical model? Provide a reason for your decision. a) A car is travelling at 70 km/h

More information

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks)

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks) 1. The points P( 2, 4), Q (3, 1) and R (1, 6) are shown in the diagram below. (a) Find the vector PQ. (b) Find a vector equation for the line through R parallel to the line (PQ). 2. The position vector

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Quiz 2 Practice Problems

Quiz 2 Practice Problems Quiz Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not essential.

More information

Vectors A Guideline For Motion

Vectors A Guideline For Motion AP Physics-1 Vectors A Guideline For Motion Introduction: You deal with scalar quantities in many aspects of your everyday activities. For example, you know that 2 liters plus 2 liters is 4 liters. The

More information

25 More Trigonometric Identities Worksheet

25 More Trigonometric Identities Worksheet 5 More Trigonometric Identities Worksheet Concepts: Trigonometric Identities Addition and Subtraction Identities Cofunction Identities Double-Angle Identities Half-Angle Identities (Sections 7. & 7.3)

More information

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Unit 1 Laws of Sines and Cosines Unit 4 Polar Equations Law of Cosines Law of Sines Ambiguous Case Sine Area Formula Hero s Formula Applications

More information

PreCalculus Second Semester Review Chapters P-3(1st Semester)

PreCalculus Second Semester Review Chapters P-3(1st Semester) PreCalculus Second Semester Review Chapters P-(1st Semester) Solve. Check for extraneous roots. All but #15 from 1 st semester will be non-calculator. P 1. x x + 5 = 1.8. x x + x 0 (express the answer

More information

4. The diagram below represents two concurrent forces.

4. The diagram below represents two concurrent forces. 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? A) 0º B) 45º C) 90.º D) 180.º 2. Two forces act concurrently

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Section 3.4 pplied Problems 151 3.4 pplied Problems The Law of Sines and the Law of Cosines are particularly useful for solving applied problems. Please remember when using the Law

More information

D) sin A = D) tan A = D) cos B =

D) sin A = D) tan A = D) cos B = MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the function requested. Write your answer as a fraction in lowest terms. 1) 1) Find sin A.

More information

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25 UNIT 2 - APPLICATIONS OF VECTORS Date Lesson TOPIC Homework Sept. 19 2.1 (11) 7.1 Vectors as Forces Pg. 362 # 2, 5a, 6, 8, 10 13, 16, 17 Sept. 21 2.2 (12) 7.2 Velocity as Vectors Pg. 369 # 2,3, 4, 6, 7,

More information

Find graphically, using scaled diagram, following vectors (both magnitude and direction):

Find graphically, using scaled diagram, following vectors (both magnitude and direction): 1 HOMEWORK 1 on VECTORS: use ruler and protractor, please!!! 1. v 1 = 3m/s, E and v = 4m/s, 3 Find graphically, using scaled diagram, following vectors (both magnitude and direction): a. v = v 1 + v b.

More information

# x = v f + v & % ( t x = v

# x = v f + v & % ( t x = v Name: Physics Chapter 4 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: F = ma µ = F fric a = v f " v i t # x = v f

More information

11.4 Dot Product Contemporary Calculus 1

11.4 Dot Product Contemporary Calculus 1 11.4 Dot Product Contemporary Calculus 1 11.4 DOT PRODUCT In the previous sections we looked at the meaning of vectors in two and three dimensions, but the only operations we used were addition and subtraction

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

3. Interpret the graph of x = 1 in the contexts of (a) a number line (b) 2-space (c) 3-space

3. Interpret the graph of x = 1 in the contexts of (a) a number line (b) 2-space (c) 3-space MA2: Prepared by Dr. Archara Pacheenburawana Exercise Chapter 3 Exercise 3.. A cube of side 4 has its geometric center at the origin and its faces parallel to the coordinate planes. Sketch the cube and

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

GENERAL PHYSICS (101 PHYS)

GENERAL PHYSICS (101 PHYS) INAYA MEDICAL COLLEGE (IMC) PHYS 101- LECTURE 1 GENERAL PHYSICS (101 PHYS) DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

Physics. Chapter 5 Newton s Third Law

Physics. Chapter 5 Newton s Third Law Physics Chapter 5 Newton s Third Law Forces and Interactions In previous lessons, we defined a force as a push or pull. But in reality, no push or pull EVER occurs alone. They come in pairs. Some examples:

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v. Then determine if u and v are orthogonal. 3. u = 9, 3, v = 1, 3 Since, u and v are orthogonal. 6. u = 11i + 7j; v = 7i + 11j Write u and v in component form as Since, u

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Chapter 7.4: Vectors

Chapter 7.4: Vectors Chapter 7.4: Vectors In many mathematical applications, quantities are determined entirely by their magnitude. When calculating the perimeter of a rectangular field, determining the weight of a box, or

More information

Math 0302 Course Review

Math 0302 Course Review 89 Solve the following: Math 0302 Course Review ) 4y + 23 = 47 2) 6(2y + 3) 4 = 2y 22 3) 5y+ 6 2y 4 3 = 2 4) 2+6 7 = 3 5) = 7 y + pg (solve for y) 6) 2 7 + 6 = 0 7) ac bc = ab + vh (solve for a) 8) 2 =

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

Math 1720 Final Exam REVIEW Show All work!

Math 1720 Final Exam REVIEW Show All work! Math 1720 Final Exam REVIEW Show All work! The Final Exam will contain problems/questions that fit into these Course Outcomes (stated on the course syllabus): Upon completion of this course, students will:

More information

Chapter 7. Applications of Trigonometry and Vectors. Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307)

Chapter 7. Applications of Trigonometry and Vectors. Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307) Chapter 7 Applications of Trigonometry and Vectors Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307) ( a h) x ( a h) ycos θ X =, Y = f secθ ysinθ f secθ ysinθ 1. house: X H 1131.8

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

SB Ch 6 May 15, 2014

SB Ch 6 May 15, 2014 Warm Up 1 Chapter 6: Applications of Trig: Vectors Section 6.1 Vectors in a Plane Vector: directed line segment Magnitude is the length of the vector Direction is the angle in which the vector is pointing

More information

Section 3.4 Solving Problems Using Acute Triangles

Section 3.4 Solving Problems Using Acute Triangles Section 3.4 Solving Problems Using Acute Triangles May 9 10:17 AM Example 1: Textbook page 154 Two security cameras in an museum must be adjusted to monitor a new display of fossils. The cameras are mounted

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Math Self-Test Version Form A Measurement and Geometry

Math Self-Test Version Form A Measurement and Geometry Math Self-Test Version 0.1.1 Form A Measurement and Geometry Draw each object and describe the key characteristics that define the object. [3 pts. each] 1) Acute Triangle 2) Arc 3) Chord 4) Cube 5) Cylinder

More information

1N the force that a 100g bar of chocolate exerts on your hand.

1N the force that a 100g bar of chocolate exerts on your hand. Forces: - - > cause change in motions Newton's first law = law of inertia In absence of a net external force acting upon it, a body will either remain at rest or continue in its rectilinear uniform motion.

More information

Math 1131Q Section 10

Math 1131Q Section 10 Math 1131Q Section 10 Section 3.9 and 3.10 Oct 19, 2010 Find the derivative of ln 3 5 e 2 ln 3 5 e 2 = ln 3 + ln 5/2 + ln e 2 = 3 ln + ( 5 ) ln + 2 2 (ln 3 5 e 2 ) = 3 + 5 2 + 2 Find the derivative of

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Vectors Background Information Physics and Engineering deal with quantities that have both size and direction. These physical quantities have a special math language

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5

C) ) cos (cos-1 0.4) 5) A) 0.4 B) 2.7 C) 0.9 D) 3.5 C) - 4 5 Precalculus B Name Please do NOT write on this packet. Put all work and answers on a separate piece of paper. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

More information

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A 2. For Cosine Rule of any triangle ABC, c² is equal to A.

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places.

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places. Chapter 6 Practice Test Find the radian measure of the angle with the given degree measure. (Round your answer to three decimal places.) 80 Find the degree measure of the angle with the given radian measure:

More information

Solution. Section 4.1 Law of Sines. Exercise. Exercise in. 9.6 in in. 621 in. In triangle ABC, A 110.

Solution. Section 4.1 Law of Sines. Exercise. Exercise in. 9.6 in in. 621 in. In triangle ABC, A 110. Section 4.1 Law of Sines In triangle ABC, B 110, C 40 and b 18in. Find the length of side c. A 180 ( B C) 180110 40 30 a b c b sin A sin B sin C sin B a 18 c 18 sin 30 sin110 sin 40 sin110 a 18sin 30 c

More information

Trigonometric ratios:

Trigonometric ratios: 0 Trigonometric ratios: The six trigonometric ratios of A are: Sine Cosine Tangent sin A = opposite leg hypotenuse adjacent leg cos A = hypotenuse tan A = opposite adjacent leg leg and their inverses:

More information

1.1 Angles, Degrees, and Arcs

1.1 Angles, Degrees, and Arcs MA140 Trig 2015 Homework p. 1 Name: 1.1 Angles, Degrees, and Arcs Find the fraction of a counterclockwise revolution that will form an angle with the indicated number of degrees. 3(a). 45 3(b). 150 3(c).

More information

Skills Practice Skills Practice for Lesson 3.1

Skills Practice Skills Practice for Lesson 3.1 Skills Practice Skills Practice for Lesson.1 Name Date Get Radical or (Be)! Radicals and the Pythagorean Theorem Vocabulary Write the term that best completes each statement. 1. An expression that includes

More information

Final Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Final Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question. ( Final Exam Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. is an isosceles triangle. is the longest side with length. = and =. Find. 4 x + 4 7

More information

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D) Exam Name 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity 2) An athlete participates in an interplanetary discus throw competition during an

More information

Pre-Calc Vectors ~1~ NJCTL.org

Pre-Calc Vectors ~1~ NJCTL.org Intro to Vectors Class Work Draw vectors to represent the scenarios. 1. A plane flies east at 300 mph. 2. A ship sails northwest at 20 knots. 3. A river flows south at 4 mph. Draw the following vector.

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS TOPIC 3 Motion in two dimensions 3.1 Overview 3.1.1 Module 1: Kinematics Motion on a Plane Inquiry question: How is the motion of an object that changes its direction of movement on a plane described?

More information

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5) Test # Review Math 14 Name (6.5 to 6.7, 10.1 to 10.,and 10.5) Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the product of the complex

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

2 and v! = 3 i! + 5 j! are given.

2 and v! = 3 i! + 5 j! are given. 1. ABCD is a rectangle and O is the midpoint of [AB]. D C 2. The vectors i!, j! are unit vectors along the x-axis and y-axis respectively. The vectors u! = i! + j! 2 and v! = 3 i! + 5 j! are given. (a)

More information