I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resultant Magnitude V. Find Angle associated with Resultant VI.

Size: px
Start display at page:

Download "I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resultant Magnitude V. Find Angle associated with Resultant VI."

Transcription

1 On Twitter: twitter.com/mathprintables I. Model Problems. II. Vector Basics III. Addition Of Vectors IV. Find Resltant Magnitde V. Find Angle associated with Resltant VI. Answer Key Web Resorces Vectors : Resltant Vectors : All Rights Resered Commercial Use Prohibited Terms of Use: By downloading this file yo are agreeing to the Terms of Use Described at Online Graphing Calclator : Free Printable Math Worksheets

2 Vectors represent magnitde and direction. Vectors can be named like a ray, or in bold with one letter in bold, (or in handwritten text). The magnitde of ector is the size of a ector often representing force or elocity. The direction of a ector is an angle measrement where 0 is to the right on the horizontal Directio n I. Model Problems In the following problem yo will learn to show ector addition sing the tail-to-tip method. Find. Translate. Slide along so that the tail of is at the tip of Draw the resltant ector,, which starts at the tail of and ends at the tip of

3 In the following problem yo will find the magnitde and direction of a resltant ector. Problem: Sketch the ectors. A ector has a magnitde of 10 and a direction of 0. A ector has a magnitde of 6 and a direction of 50. Find the direction and magnitde of to the nearest whole ales. 50 Translate and draw the resltant. 6 Find the spplementary angle to find an angle of the triangle. Use Law of Cosines to find the magnitde, m, of. Law of Cosines Sbstitte. Simplify. Ѳ Ѳ Label with new information. Rond Use Law of Sines to find the direction, Ѳ, of. Law of Sines Sbstitte. Isolate. Ѳ Find the inerse. Rond to the nearest whole degree.

4 has a magnitde of 15 and a direction of 18. In the following problems yo will find information abot the resltant ector of two forces applied to an object Problem: Two forces with magnitdes of 15 ponds and 35 ponds are applied to an object. The magnitde of the resltant is 28 ponds. Find the measrement of the angle between the resltant ector and the ector of the 15 pond force to the nearest whole degree. Sketch the problem. Remember this is 15 lb Ѳ a sketch. The 28 lb actal angles may 15 lb 35 lb look ery different. 35 lb Law of Cosines Sbstitte. Simplify. Isolate. Find the inerse. Rond to the nearest degree. Problem: Sketch the problem. Remember this is a sketch. The actal angles may look ery different. Two forces with magnitdes of 15 ponds and 35 ponds and an angle of 40 between them are applied to an object. Find the magnitde of the resltant ector. 15 lb lb 15 lb lb 140 m Law of Cosines Sbstitte. Simplify. lb

5 II. Vector Basics 1. What is the magnitde and direction of 2. What is the magnitde and direction of 8.5 B 4.5 lb R 110 A 28 T 3. What is the magnitde and direction of 4. Sketch the resltant ector. J 12 lb 70 K Sketch the resltant ector. 6. Sketch the resltant ector What is the magnitde and direction of the resltant in the sketch below 8. What is the magnitde and direction of the resltant in the sketch below What is the magnitde and direction of the resltant in the sketch below

6 III. Addition of Vectors 10. Vector has a magnitde of 20 and a direction of 0. Vector has a magnitde of 40 and a direction of 60. Find the magnitde and direction of the resltant to the nearest whole 11. Vector has a magnitde of 15 and a direction of 0. Vector has a magnitde of 18 and a direction of 70. Find the magnitde and direction of the resltant to the nearest whole Vector has a magnitde of 24 and a direction of 0. Vector has a magnitde of 40 and a direction of 115. Find the magnitde and direction of the resltant to the nearest whole (contined on next page)

7 IV. Find the magnitde of the resltant ector when two forces are applied to an object. 13. Two forces with magnitdes of 20 ponds and 14 ponds and an angle of 55 between them are applied to an object. Find the magnitde of the resltant ector to the nearest whole 14. Two forces with magnitdes of 48 ponds and 65 ponds and an angle of 80 between them are applied to an object. Find the magnitde of the resltant ector to the nearest whole 20 lb lb 65 lb lb 15. Two forces with magnitdes of 70 ponds and 40 ponds and an angle of 130 between them are applied to an object. Find the magnitde of the resltant ector to the nearest whole 16. Two forces with magnitdes of 77 ponds and 45 ponds and an angle of 43 between them are applied to an object. Find the magnitde of the resltant ector to the nearest whole 17. Two forces with magnitdes of 62 ponds and 62 ponds and an angle of 145 between them are applied to an object. Find the magnitde of the resltant ector to the nearest whole

8 V. Find the angle measrements between the resltant ector and force ector when two forces are applied to an object. 18. Two forces with magnitdes of 15 ponds and 10 ponds are applied to an object. The magnitde of the resltant is 24 ponds. Find the measrement of the angle between the resltant ector and the ector of the 10 pond force to the nearest whole degree. 19. Two forces with magnitdes of 6 ponds and 18 ponds are applied to an object. The magnitde of the resltant is 13 ponds. Find the measrement of the angle between the resltant ector and the ector of the 18 pond force to the nearest whole degree. 20 lb 14 lb 18 lb 14 lb 20 lb 24 lb 18 lb 6 lb 6 lb 13 lb 20. Two forces with magnitdes of 45 ponds and 62 ponds are applied to an object. The magnitde of the resltant is 100 ponds. Find the measrement of the angle between the resltant ector and the ector of the 45 pond force to the nearest whole degree. 21. Two forces with magnitdes of 200 ponds and 340 ponds are applied to an object. The magnitde of the resltant is 150 ponds. Find the measrement of the angle between the resltant ector and the ector of the 200 pond force to the nearest whole degree. 22. Two forces with magnitdes of 40 ponds and 42 ponds are applied to an object. The magnitde of the resltant is 31ponds. Find the measrement of the angle between the resltant ector and the ector of the 42 pond force to the nearest whole degree.

9 V. Challenge Problems 23. Vector has a magnitde of 53 and a direction of 0. Vector has a magnitde of 10 and a direction of 295. Find the magnitde and direction of the resltant to the nearest whole 24. Vector has a magnitde of 27 and a direction of 40. Vector has a magnitde of 34 and a direction of 58. Find the magnitde and direction of the resltant to the nearest whole 18 lb Use ectors to answer the following qestions. a) If two forces from different directions are applied to an object, can the magnitde of the resltant be larger than the sm of the magnitdes of the forces? Jstify yor answer. b) What if the forces were from the same direction? Jstify yor answer.

10 VI. Answers , lb, lb, , , , , , , lb lb lb lb lb , , a) No, the sm of two sides is greater than the third therefore the magnitde of the resltant is less than the sm of the two forces. b) The magnitde of the resltant is eqal the sm of the two forces.

Directio n I. Model Problems. In the following problem you will learn to show vector addition using the tail-to-tip method. Find.

Directio n I. Model Problems. In the following problem you will learn to show vector addition using the tail-to-tip method. Find. Vectors represent magnitde and direction. Vectors can be named like a ray, or in bold with one letter in bold, (or in handwritten text). The magnitde of ector is the size of a ector often representing

More information

II. Vector Basics 1. What is the magnitude and direction of """""#?! B What is the magnitude and direction of $% """""#? R

II. Vector Basics 1. What is the magnitude and direction of #?! B What is the magnitude and direction of $% #? R II. Vector Basics 1. What is the magnitde and direction of """""#?! B 8.5 A 3. What is the magnitde and direction of &' """"#? J 12 lb 28 70 K 2. What is the magnitde and direction of $% """""#? R T 4.5

More information

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key Web Resources Equations of Lines www.mathwarehouse.com/algebra/linear_equation/equation-of-a-line-formula.php

More information

Math 144 Activity #10 Applications of Vectors

Math 144 Activity #10 Applications of Vectors 144 p 1 Math 144 Actiity #10 Applications of Vectors In the last actiity, yo were introdced to ectors. In this actiity yo will look at some of the applications of ectors. Let the position ector = a, b

More information

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 CONTENTS INTRODUCTION MEQ crriclm objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 VECTOR CONCEPTS FROM GEOMETRIC AND ALGEBRAIC PERSPECTIVES page 1 Representation

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

3.3 Operations With Vectors, Linear Combinations

3.3 Operations With Vectors, Linear Combinations Operations With Vectors, Linear Combinations Performance Criteria: (d) Mltiply ectors by scalars and add ectors, algebraically Find linear combinations of ectors algebraically (e) Illstrate the parallelogram

More information

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10. Correction key 1 D Example of an appropriate method /4 Let x, y be the wind vector (km) y 100, 150 x, y 10, 160 100 x, 150 y 10, 160 100 withot wind with wind 100 + x = 10 and x = 0 150 + y = 160 and y

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module Lab Manal for Engrd 202, Virtal Torsion Experiment Alminm modle Introdction In this modle, o will perform data redction and analsis for circlar cross section alminm samples. B plotting the torqe vs. twist

More information

Here is a sample problem that shows you how to use two different methods to add twodimensional

Here is a sample problem that shows you how to use two different methods to add twodimensional LAB 2 VECTOR ADDITION-METHODS AND PRACTICE Purpose : You will learn how to use two different methods to add vectors. Materials: Scientific calculator, pencil, unlined paper, protractor, ruler. Discussion:

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2 Names Date. Consider the function Math 0550 Worksheet SHOW ALL OF YOUR WORK! f() = + 6 + 7 (a) Complete the square and write the function in the form f() = ( a) + b. f() = + 6 + 7 = + 6 + ( 6 ) ( 6 ) +

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review Chapter 3 Vectors and Two-Dimensional Motion Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size) and

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

7.4. The Primary Trigonometric Ratios. LEARN ABOUT the Math. Connecting an angle to the ratios of the sides in a right triangle. Tip.

7.4. The Primary Trigonometric Ratios. LEARN ABOUT the Math. Connecting an angle to the ratios of the sides in a right triangle. Tip. The Primary Trigonometric Ratios GOL Determine the values of the sine, cosine, and tangent ratios for a specific acute angle in a right triangle. LERN OUT the Math Nadia wants to know the slope of a ski

More information

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only

Which of these statements are true? A) 1, 2 and 3 only C) 2, 4 and 5 only. B) 1, 2 and 5 only D) 1, 3 and 4 only Name : 1 Qadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T ntoine lists the following vector operation statements: R U 1) ST + SR MU ) UT + UR SM 3) RS + RU

More information

6.3 Vectors in a Plane

6.3 Vectors in a Plane 6.3 Vectors in a Plane Plan: Represent ectors as directed line segments. Write the component form of ectors. Perform basic ector operations and represent ectors graphically. Find the direction angles of

More information

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7

SECTION 6.7. The Dot Product. Preview Exercises. 754 Chapter 6 Additional Topics in Trigonometry. 7 w u 7 2 =?. 7 v 77w7 754 Chapter 6 Additional Topics in Trigonometry 115. Yo ant to fly yor small plane de north, bt there is a 75-kilometer ind bloing from est to east. a. Find the direction angle for here yo shold head the

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition VECTORS Vectors in 2- D and 3- D in Euclidean space or flatland are easy compared to vectors in non- Euclidean space. In Cartesian coordinates we write a component of a vector as where the index i stands

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15 Math 2 Trigonometry 1 RATIOS OF SIDES OF A RIGHT TRIANGLE Trigonometry is all about the relationships of sides of right triangles. In order to organize these relationships, each side is named in relation

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 7 th edition Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors This work is protected by United States copyright laws and is

More information

8-2 Trigonometric Ratios

8-2 Trigonometric Ratios 8-2 Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Write each fraction as a decimal rounded to the nearest hundredth. 1. 2. 0.67 0.29 Solve each equation. 3. 4. x = 7.25

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Lecture Notes (Vectors)

Lecture Notes (Vectors) Lecture Notes (Vectors) Intro: - up to this point we have learned that physical quantities can be categorized as either scalars or vectors - a vector is a physical quantity that requires the specification

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

8 Right Triangle Trigonometry

8 Right Triangle Trigonometry www.ck12.org CHAPTER 8 Right Triangle Trigonometry Chapter Outline 8.1 THE PYTHAGOREAN THEOREM 8.2 CONVERSE OF THE PYTHAGOREAN THEOREM 8.3 USING SIMILAR RIGHT TRIANGLES 8.4 SPECIAL RIGHT TRIANGLES 8.5

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

Worksheet 1.1: Introduction to Vectors

Worksheet 1.1: Introduction to Vectors Boise State Math 275 (Ultman) Worksheet 1.1: Introduction to Vectors From the Toolbox (what you need from previous classes) Know how the Cartesian coordinates a point in the plane (R 2 ) determine its

More information

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n 12.4 The Cross Prodct 873 12.4 The Cross Prodct In stdying lines in the plane, when we needed to describe how a line was tilting, we sed the notions of slope and angle of inclination. In space, we want

More information

Experiment 3: Vector Addition

Experiment 3: Vector Addition Experiment 3: Vector Addition EQUIPMENT Force Table (4) Pulleys (4) Mass Hangers Masses Level (TA s Table) (2) Protractors (2) Rulers (4) Colored Pencils (bold colors) Figure 3.1: Force Table 15 16 Experiment

More information

ATHS FC Math Department Al Ain Revision worksheet

ATHS FC Math Department Al Ain Revision worksheet ATHS FC Math Department Al Ain Revision worksheet Section Name ID Date Lesson Marks 3.3, 13.1 to 13.6, 5.1, 5.2, 5.3 Lesson 3.3 (Solving Systems of Inequalities by Graphing) Question: 1 Solve each system

More information

5.5 U-substitution. Solution. Z

5.5 U-substitution. Solution. Z CHAPTER 5. THE DEFINITE INTEGRAL 22 5.5 U-sbstittion Eample. (a) Fin the erivative of sin( 2 ). (b) Fin the anti-erivative cos( 2 ). Soltion. (a) We se the chain rle: sin(2 )=cos( 2 )( 2 ) 0 =cos( 2 )2

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Vectors. A Vector is a quantity that has both magnitude and direction

Vectors. A Vector is a quantity that has both magnitude and direction Vectors In Chapter 1, we conceptually introduced the Vector: A Vector is a quantity that has both magnitude and direction In Chapter 3, we want to develop and learn how to work with vectors analytically.

More information

UNIT 2E. Forces on Inclined Planes

UNIT 2E. Forces on Inclined Planes Name: Regents Physics Date: Mr. Morgante UNIT 2E Forces on Inclined Planes 1. Frictionless Plane Forces on An Inclined Plane +y +y m VS. +x +x m 2. Free Body Diagram (FBD) m= mass=10kg F N +y = 30 F g

More information

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

GUIDED NOTES 5.6 RATIONAL FUNCTIONS GUIDED NOTES 5.6 RATIONAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identify

More information

MECHANICS. Prepared by Engr. John Paul Timola

MECHANICS. Prepared by Engr. John Paul Timola MECHANICS Prepared by Engr. John Paul Timola MECHANICS a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces. subdivided

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters!

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters! Vectors Chapter 3 Vector and Vector Addition Sometimes direction matters! (vector) Force Velocity Momentum Sometimes it doesn t! (scalar) Mass Speed Time Arithmetic Arithmetic works for scalars. 2 apples

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

EPUB / SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES WORKSHEET DOCUMENT

EPUB / SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES WORKSHEET DOCUMENT 03 November, 2017 EPUB / SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES WORKSHEET DOCUMENT Document Filetype: PDF 526.44 KB 0 EPUB / SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES WORKSHEET DOCUMENT This

More information

Vectors (Trigonometry Explanation)

Vectors (Trigonometry Explanation) Vectors (Trigonometry Explanation) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2

UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2 UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2 Algebra II Unit 2 Overview: Trigonometric Functions Building on their previous work with functions, and on their work with trigonometric ratios

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

AP Physics 1 Dynamics Free Response Problems ANS KEY

AP Physics 1 Dynamics Free Response Problems ANS KEY AP Physics 1 Dynamics ree Response Problems ANS KEY 1. A block of mass m, acted on by a force directed horizontally, slides up an inclined plane that makes an angle θ with the horizontal. The coefficient

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Secondary Math 3 7-5 GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Warm Up Factor completely, include the imaginary numbers if any. (Go to your notes for Unit 2) 1. 16 +120 +225

More information

Rose Curve / G. TEACHER NOTES MATH NSPIRED: PRECALCULUS. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator TM

Rose Curve / G. TEACHER NOTES MATH NSPIRED: PRECALCULUS. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator TM Math Objectives Students will understand the role of the values of a and n in the equation r = asin(nθ). Students will be able to predict the number of petals and their length by examining the polar equation.

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Unit 5 Day 6 Law of Cosines

Unit 5 Day 6 Law of Cosines Unit 5 Day 6 Law of Cosines Warm-up Happiness begins where selfishness ends. - John Wooden x = 2.25 x = -5 Solve each triangle using Law of Sines. Round to the nearest hundredth. 3) 4) C = 40 a = 32.97

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots.

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots. Extension A: Circles and Ellipses Algebra ; Pre-Calculus Time required: 35 50 min. Learning Objectives Math Objectives Students will write the general forms of Cartesian equations for circles and ellipses,

More information

Indiana Academic Standards for Precalculus

Indiana Academic Standards for Precalculus PRECALCULUS correlated to the Indiana Academic Standards for Precalculus CC2 6/2003 2004 Introduction to Precalculus 2004 by Roland E. Larson and Robert P. Hostetler Precalculus thoroughly explores topics

More information

X ; this can also be expressed as

X ; this can also be expressed as The Geometric Mean ID: 9466 TImath.com Time required 30 minutes Activity Overview In this activity, students will establish that several triangles are similar and then determine that the altitude to the

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW

Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given,, and, use the Law of Sines to solve the triangle

More information

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions FURTHER TRIGONOMETRY B the end of this set of eercises, ou should be able to (a) recognise the graphs of sine, cosine and tangent functions sketch and identif other trigonometric functions solve simple

More information

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue. Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.

More information

Trigonometry Math 076

Trigonometry Math 076 Trigonometry Math 076 133 Right ngle Trigonometry Trigonometry provides us with a way to relate the length of sides of a triangle to the measure of its angles. There are three important trigonometric functions

More information

Unit 3 Day 13 Review 1

Unit 3 Day 13 Review 1 Unit 3 Day 13 Review 1 Warm-up! Graph the following functions, with at least 4 points. Find the domain and range. Then, tell how they are changed from their parent graph. (Hint: Remember that the order

More information

Worksheet 1.4: Geometry of the Dot and Cross Products

Worksheet 1.4: Geometry of the Dot and Cross Products Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products From the Toolbox (what you need from previous classes): Basic algebra and trigonometry: be able to solve quadratic equations,

More information

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective:

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective: Name Period Date: Topic: 9-2 Circles Essential Question: If the coefficients of the x 2 and y 2 terms in the equation for a circle were different, how would that change the shape of the graph of the equation?

More information

Exercise Set 4.3: Unit Circle Trigonometry

Exercise Set 4.3: Unit Circle Trigonometry Eercise Set.: Unit Circle Trigonometr Sketch each of the following angles in standard position. (Do not use a protractor; just draw a quick sketch of each angle. Sketch each of the following angles in

More information

9.7 Extension: Writing and Graphing the Equations

9.7 Extension: Writing and Graphing the Equations www.ck12.org Chapter 9. Circles 9.7 Extension: Writing and Graphing the Equations of Circles Learning Objectives Graph a circle. Find the equation of a circle in the coordinate plane. Find the radius and

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

Circle - Circumference

Circle - Circumference Name : Score : Circle - Circumference Example : Circumference of a circle = 2πr or πd 8.53 m Diameter (d) = 8.53 m πd = 3.14 x 8.53 26.78 m Find the circumference of each circle. Round the answer to two

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Chapter 7.4: Vectors

Chapter 7.4: Vectors Chapter 7.4: Vectors In many mathematical applications, quantities are determined entirely by their magnitude. When calculating the perimeter of a rectangular field, determining the weight of a box, or

More information

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics CE 201 Statics 2 Physical Sciences Branch of physical sciences 16 concerned with the state of Mechanics rest motion of bodies that are subjected to the action of forces Rigid-Body Deformable-Body Fluid

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below.

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below. Weaving a Parabola Web with the Quadratic Transformer In this activity, you explore how the graph of a quadratic function and its symbolic expression relate to each other. You start with a set of four

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. Find the measure of angle θ. Round to the nearest degree, if necessary. 1. An acute angle measure and the length of the hypotenuse are given,

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14

Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp ) Page! 1 of! 14 Pre-AP Geometry 8-2 Study Guide: Trigonometric Ratios (pp 541-544) Page! 1 of! 14 Attendance Problems. Write each fraction as a decimal rounded to the nearest hundredths. 2 7 1.! 2.! 3 24 Solve each equation.

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

MCR3U Skills Review. Study Tips. Unit 1 Polynomials and Functions

MCR3U Skills Review. Study Tips. Unit 1 Polynomials and Functions MCR3U Skills Review Study Tips Read over the outline and rank the concepts for review by identifying which concepts you have the most difficulty with. Set GOALS. Start with an overall achievement goal,

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

PROBLEM rad/s r. v = ft/s

PROBLEM rad/s r. v = ft/s PROLEM 15.38 An automobile traels to the right at a constant speed of 48 mi/h. If the diameter of a wheel is 22 in., determine the elocities of Points, C,, and E on the rim of the wheel. A 48 mi/h 70.4

More information

Trigonometry. General Outcome: Develop trigonometric reasoning.

Trigonometry. General Outcome: Develop trigonometric reasoning. Math 20-1 Chapter 2 Trigonometry General Outcome: Develop trigonometric reasoning. Specific Outcomes: T1. Demonstrate an understanding of angles in standard position [0 to 360 ]. [R, V] T2. Solve problems,

More information

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract.

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract. Express a Vector in Component Form Find the component form of with initial point A(1, 3) and terminal point B(1, 3). = x 2 x 1, y 2 y 1 Component form = 1 1, 3 ( 3) (x 1, y 1 ) = (1, 3) and ( x 2, y 2

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Introduction Syllabus and teaching strategy Physics Introduction Mathematical review trigonometry vectors Motion in one dimension http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information