Lab 8 Simple Electric Circuits


 Allyson Barrett
 3 years ago
 Views:
Transcription
1 Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking about the flow of electric charge. In the circuits in this lab, the movement of negatively charged electrons results in an electric current. In several respects, electric charge travels through wires like water travels through pipes. in electrical circuits (that is, the flow of electrons) behaves similarly to the flow of water in pipes. With some Christmas tree lights, you can remove a bulb from the "string", and all of the bulbs go out. On the other hand, with the lamps and ceiling lights in your house, you can remove a bulb from a fixture and the other bulbs in the house remain lit. The reason for this has to do with the way the lights are wired and how different circuits affect voltage and current. One of the most useful laws when looking at circuits is Ohm s Law. Ohm s Law states current = voltage reistance, measured in Amperes [A], is the amount of charge that flows per second past a specific point in a circuit. Voltage, measured in Volts [V], is the potential difference across two points in an electric circuit. Whenever the ends of an electrical conductor (a light bulb or a wire, for instance) are held at different potentials, electric charge will flow from the end with the higher potential to the one with the lower potential. This is similar to water flowing down a waterslide where water at the top has a higher potential energy and water at the bottom has a lower potential energy. As long as the two ends remain at different potentials, charge will continue to flow. It is a battery s function to maintain a potential difference between two parts of a circuit. Resistance, measured in Ohms [Ω], is a measure of the resistance to the flow of current in a wire. The sum of the potential differences for each component in a single circuit loop, including the battery, is zero! Imagine adding up all the height changes water experiences as it flows down a waterslide, into a pool and is pumped back to the top; the net result is zero! In this lab, you will look at different types of circuits (the way electrical equipment is wired) and investigate how the current and voltage behaves in these circuits. 1
2 PROCEDURE Use identical light bulbs and make sure the holders are all the same. This will ensure that all bulbs have the same resistance. Part A: Exploring a Lightbulb 1. You will be given one battery, a light bulb, and a single wire. You will not be using a lamp holder. 2. Connect the wires in such a way that it lights the bulb. 3. In the space provided on the worksheet, draw a sketch of the connections you made. Figure 1 filament base CHECKPOINT 1: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING Part B: Single Bulb 1. Set up the single bulb circuit shown in Figure Observe the brightness of the bulb. As a reference point for the rest of the lab, we will say that the value of the current through the bulb, based on the brightness of the bulb, is "high". 3. Use the voltmeter to measure the potential difference across the battery, and record this value in the worksheet. Figure 2  One Bulb 4. Measure and record the potential difference across the light bulb. It is a good idea to keep the single bulb circuit available for comparison for the rest of the lab. CHECKPOINT 2: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING Part C: Two Bulbs in Series It is important to make sure that you are using two identical bulbs. Connect each bulb to a single bulb circuit. If they do not glow with the same brightness, find two that will. 1. Use two identical bulbs. Connect each bulb to a single bulb circuit. If they glow with the same brightness, then they have the same resistance. 2
3 2. Set up the two bulb series circuit shown in figure 3. You may need to use 24 batteries. You can gather any extra equipment you need to complete the circuit. In a simple series circuit, there is only one current loop. There are no junctions where the current splits or combines. Therefore, the same current flows through all the elements in the circuit (battery, wire, bulbs). 3. Compare the brightness of the two bulbs in this circuit to each other and record your observations. 4. Measure and record the potential difference across the battery. Figure 3 Series Circuit 5. Measure and record the potential difference across each light bulb individually. CHECKPOINT 3: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING Part D: Two Bulbs in Parallel It is important to make sure that you are using two identical bulbs. Connect each bulb to a single bulb circuit. If they do not glow with the same brightness, find two that will. 6. Set up the two bulb parallel circuit shown in figure 4. In a parallel circuit, there are multiple current loops. that goes through the battery is then split into multiple branches. Because of this, the current through the battery must be equal to the combination of the currents in each of the branches. 7. Compare the brightness of the two bulbs in this circuit to each other and record your observation. Figure 4 Parallel Circuit 8. Measure and record the potential difference across the battery. 9. Measure and record the potential difference across each individual light bulb. CHECKPOINT 4: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING 3
4 Part E: Combination Circuit 1 It is important to make sure that you are using three identical bulbs. Connect each bulb to a single bulb circuit. If they do not glow with the same brightness, find two that will. 10. Set up the combination circuit shown in figure Compare the brightness of the three bulbs in this circuit to each other and record your observation. 12. Measure and record the potential difference across the battery. Figure 5 Combination Circuit Measure and record the potential difference across each individual light bulb. CHECKPOINT 5: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING Part F: Combination Circuit 2 It is important to make sure that you are using three identical bulbs. Connect each bulb to a single bulb circuit. If they do not glow with the same brightness, find two that will. 14. Set up the combination circuit shown in figure Compare the brightness of the two bulbs in this circuit to each other and record your observation. 16. Measure and record the potential difference across the battery. Figure 6 Combination Circuit Measure and record the potential difference across each light bulb individually CHECKPOINT 6: HAVE YOUR TA CHECK YOUR WORK BEFORE PROCEEDING 4
5 SIMPLE ELECTRIC CIRCUITS  WORKSHEET Part A: Exploring a Lightbulb 1. Provide a sketch of your circuit in the space below. Include enough detail in your sketch to indicate the orientation of the battery (plus & minus) and which parts of the bulb are being touched. CHECKPOINT 1 Part B: Single Bulb Difference across Battery (V) Difference across Bulb (V) 2. How does the potential difference across the bulb compare to the potential difference across the battery? CHECKPOINT 2 5
6 Part C: Two Bulbs in Series Difference (V) Battery Bulb 1 Bulb 2 1. Add up the potential differences for the two light bulbs in the series combination. How does that sum compare to the potential difference across the battery? 2. From your observation, what can you conclude about the relative amount of current through each bulb? 3. Are the bulbs brighter in the one bulb circuit or the two bulb circuit? What does this imply about the current going through the bulbs in the two bulb series circuit versus the one bulb circuit? 4. Would adding more light bulbs in series increase, decrease, or not change the current going through the bulbs already in the circuit? CHECKPOINT 3 6
7 Part D: Two Bulbs in Parallel Difference (V) Battery Bulb 1 Bulb 2 1. How does the potential difference across each of the two light bulbs in the parallel combination compare to the potential difference across the battery? 2. From your observation, what can you conclude about the relative amount of current through each bulb? 3. Are the bulbs brighter in the one bulb circuit or the two bulb parallel circuit? What does this imply about the current going through the bulbs in the two bulb parallel circuit versus the one bulb circuit? 4. Would adding more light bulbs in parallel increase, decrease or not change the brightness of the other bulbs in the circuit? CHECKPOINT 4 7
8 Part E: Combination Circuit 1 Difference (V) Battery Bulb 1 Bulb 2 Bulb 3 1. How does the potential difference across bulb 2 compare to the potential difference across bulb 3? 2. How does the potential difference across bulbs 2 and 3 compare to the potential difference across bulb 1? 3. Based on your observations of brightness, how does the current through bulb 2 compare to the current through bulb 3? 4. Based on your observations of brightness, how does the current through bulb 2 compare to the current through bulb 1? CHECKPOINT 5 8
9 Part F: Combination Circuit 2 Difference (V) Battery Bulb 1 Bulb 2 Bulb 3 1. How does the potential difference across bulb 2 compare to the potential difference across bulb 3? 2. How does the potential difference across bulbs 2 and 3 compare to the potential difference across bulb 1? 3. Based on your observations of brightness, how does the current through bulb 2 compare to the current through bulb 3? 4. Based on your observations of brightness, how does the current through bulb 2 compare to the current through bulb 1? CHECKPOINT 6 9
EXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More informationClicker Session Currents, DC Circuits
Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases
More informationInsulators Nonmetals are very good insulators; their electrons are very tightly bonded and cannot move.
SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and nonohmic conductors Series and parallel connection Energy in an electric circuit Xplanation 1. CONDUCTORS AND INSULATORS
More informationNORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I
NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts
More informationCircuits. PHY2054: Chapter 18 1
Circuits PHY2054: Chapter 18 1 What You Already Know Microscopic nature of current Drift speed and current Ohm s law Resistivity Calculating resistance from resistivity Power in electric circuits PHY2054:
More informationT U T O R I A L : A M O D E L F O R C I R C U I T S
South Pasadena Physics Name 10 Circuits Period Date T U T O R I A L : A M O D E L F O R C I R C U I T S Tutorial Instructions This Tutorial contains Activities and Exercises. Activities: These are intended
More informationElectricity Review completed.notebook. June 13, 2013
Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a
More informationOhm s Law Book page Syllabus 2.10
Ohm s Law Book page 85 87 Syllabus 2.10 What s wrong with this circuit diagram? Task 2 Sketch a simple series circuit containing a cell and a bulb. On your circuit diagram, show an ammeter and voltmeter
More informationFor an electric current to flow between two points, two conditions must be met.
ELECTROSTATICS LAB Electric Circuits For an electric current to flow between two points, two conditions must be met. 1. There must be a conducting path between the points along which the charges can move.
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)
More informationIntroduction. Prelab questions: Physics 1BL KIRCHOFF S RULES Winter 2010
Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying
More informationPower lines. Why do birds sitting on a highvoltage power line survive?
Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high
More informationAgenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws
Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question
More informationVoltage Sources. Potential Energy vs. Electric Potential. Clicker Question: Clicker Question:
Electrostatics Cont. Physics Open House Wednesday, November 5th Lab Tours! Free Pizza and Soft Drinks! Star Party at Campus Observatory! Learn about the Physics Department and our majors Potential Energy
More informationReview. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.
More informationCircuitsOhm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?
1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250 ohm resistor.
More informationAP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
More informationAn Introduction to Electricity and Circuits
An Introduction to Electricity and Circuits Materials prepared by Daniel Duke 4 th Sept 2013. This document may be copied and edited freely with attribution. This course has been designed to introduce
More information1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationStatic Electricity. Electric Field. the net accumulation of electric charges on an object
Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e  on anything that has an electric charge opposite charges attract like charges repel Static
More informationLesson Plan: Electric Circuits (~130 minutes) Concepts
Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of
More informationBrian Blais Quick Homemade Guide to Circuits
Brian Blais Quick Homemade Guide to Circuits 1 Initial Equations and Concepts Current, I. Units:amps rate of flow of charge: I = Q/ t Potential difference, V. Units: volts esistance,. Units:ohms Ohm s
More informationPHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits
PHY232 Spring 2008 Jon Pumplin http://www.pa.msu.edu/~pumplin/phy232 (Original ppt courtesy of Remco Zegers) Direct current Circuits So far, we have looked at systems with only one resistor PHY232 Spring
More informationIn this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.
Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?
More informationPhysics Circuits: Series
FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Circuits: Series Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 20122013 Series
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationLABORATORY 4 ELECTRIC CIRCUITS I. Objectives
LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that
More information52 VOLTAGE, CURRENT, RESISTANCE, AND POWER
52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage
More information(d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do?
uggé: DC Circuits 2 Learning the Language for DC Circuits 2.1 Circuit Diagrams (a) circuit diagram is a representation that uses symbols to show the components in a circuit and how they are connected:
More informationDirectCurrent Circuits. Physics 231 Lecture 61
DirectCurrent Circuits Physics 231 Lecture 61 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then
More informationConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli
ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws
More informationFigure 1: Capacitor circuit
Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors
More informationDynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison
Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE
More informationPhysics 2020 Lab 5 Intro to Circuits
Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows
More informationTactics Box 23.1 Using Kirchhoff's Loop Law
PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationElectromagnetism Checklist
Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
More informationElectricity Worksheet (p.1) All questions should be answered on your own paper.
Electricity Worksheet (p.1) 1. In terms of attraction and repulsion, how do negative particles affect negative particles? How do negatives affect positives? 2. What happens to electrons in any charging
More informationCurrent Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3
Current Electricity ScienceLinks 9, Unit 4 SciencePower 9, Unit 3 Current Electricity The flow of negative charges (electrons) through conductors Watch the BrainPOPs: Electricity Current Electricity Activity:
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More information10/14/2018. Current. Current. QuickCheck 30.3
Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,
More informationCIRCUITS: Series & Parallel
CIRCUITS: Series & Parallel Last Week s BIG IDEAS: Opposite charged objects attract Like charged objects repel Last Week s BIG IDEAS: The electrons are the loose particles that move to make things charged
More information2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.
PS 12b Lab 1a Fun with Circuits Lab 1a Learning Goal: familiarize students with the concepts of current, voltage, and their measurement. Warm Up: A.) Given a light bulb, a battery, and single copper wire,
More informationAP Physics C  E & M
Slide 1 / 27 Slide 2 / 27 AP Physics C  E & M Current, Resistance & Electromotive Force 20151205 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from
More informationLab 3 Parallel Circuits
Lab 3 Parallel Circuits!!! RED THIS PGE!!!! When a wire or light bulb is connected across a battery, we have evidence that something is happening in the circuit. The wire gets warm. The bulb glows. In
More informationELECTRICITY UNIT REVIEW
ELECTRICITY UNIT REVIEW S1304: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges
More informationCollege Physics B  PHY2054C
Power College  PHY2054C and 09/15/2014 My Office Hours: Tuesday 10:00 AM  Noon 206 Keen Building PHY2054C Power First MiniExam this week on Wednesday!! Location: UPL 101, 10:1011:00 AM Exam on chapters
More informationGrade 6 Math Circles. Circuits
Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with
More informationPhysics 7B1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20
Physics 7B1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making
More informationSierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits
Searching for Series and Parallel Circuits. Observe and Design Draw circuit diagrams according to the word descriptions below. Build the circuits and use the symbols to represent the battery and the light
More informationName Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.
Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will continue your exploration of dc electric circuits with a steady current. The circuits will be
More informationSection 3. Series and Parallel Circuits: Lighten Up. What Do You See? What Do You Think? Investigate
Section 3 Series and Parallel Circuits: Lighten Up Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section 3 What Do You See? SC.912.N.2.4 Explain that scientific knowledge
More informationPHYSICS FORM 5 ELECTRICAL QUANTITES
QUANTITY SYMBOL UNIT SYMBOL Current I Amperes A Voltage (P.D.) V Volts V Resistance R Ohm Ω Charge (electric) Q Coulomb C Power P Watt W Energy E Joule J Time T seconds s Quantity of a Charge, Q Q = It
More informationIn the following information, you will study these three physical quantities as they relate to simple electrical circuits.
Module 7 Ohm's Law INTRODUCTION In this experiment, you will study Ohm's Law, the most fundamental relation used in the analysis of electrical circuits. Ohm's Law relates the quantities of voltage, electric
More information(b) State the relation between work, charge and potential difference for an electric circuit.
Question Bank on ChElectricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential
More informationPHYS 1444 Section 02 Review #2
PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on
More informationRead Chapter 7; pages:
Forces Read Chapter 7; pages: 191221 Objectives:  Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors
More informationChapter 19. Electric Current, Resistance, and DC Circuit Analysis
Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:
More informationChapter 26 & 27. Electric Current and Direct Current Circuits
Chapter 26 & 27 Electric Current and Direct Current Circuits Electric Current and Direct Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination
More informationWhat does it mean for an object to be charged? What are charges? What is an atom?
What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric
More informationA model for circuits part 2: Potential difference
A model for circuits part 2: Potential difference I. Using the CCK simulation The Circuit Construction Kit (CCK) accurately simulates the behavior of electrical circuits. Hints for use: Rightclick on
More informationphysics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION
Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 254 Resistivity Example 255: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper
More informationName Date Time to Complete
Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to
More informationElectrical Circuits. Sources of Voltage
Electrical Circuits ALESSANDRO VOLTA (17451827) ANDRE MARIE AMPERE (17751836) GEORG SIMON OHM (17891854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known
More informationActivity 4: The ElectricCircuit Interaction
RECORD SHEET Activity 4: The ElectricCircuit Interaction Name Date Class Key Questions 1. 2. Explore Your Ideas Experiment 1: When does an electriccircuit interaction occur? 1. Draw a picture of the
More informationNow let s look at some devices that don t have a constant resistance.
Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then
More informationAC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage
Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from
More informationELECTRICAL FORCE UNIT NOTES
ELECTRICAL FORCE UNIT NOTES Property that causes electrical force is called Charge Opposite charges Attract Like charges Repel Charge comes from the atoms. Electrons are negative, protons are positive.
More informationElectricity & Magnetism
Electricity & Magnetism Unit 7 Recall that Atoms l Have neutrons, protons, and electrons. l Protons are positively charged l Electrons are negatively charged l Opposite charges attract l Same charges repel
More informationElectricity & Magnetism. Unit 6
Electricity & Magnetism Unit 6 Recall that Atoms l Have neutrons, protons, and electrons. l Protons are positively charged l Electrons are negatively charged l Opposite charges attract l Same charges repel
More informationChapter 19 Lecture Notes
Chapter 19 Lecture Notes Physics 2424  Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1e t/(rc) ] q = q 0 e t/(rc τ = RC
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (active elements) and energytakers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The
More informationCHAPTER 1 ELECTRICITY
CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit
More informationMagnets attract some metals but not others
Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More information4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:
4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...
More informationElectricity and Magnetism Module 4 Student Guide
Electricity and Magnetism Module 4 Student Guide Note: each time you are finished with a circuit we ask that you disconnect all wires, so that the next circuit you investigate starts with a blank slate.
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationCircuit 3. Name Student ID
Name Student ID last first Score II. [10 pts total] The following questions are based on your experience in the lab. The questions are not related to each other. Please assume that all batteries are ideal
More informationTest Review Electricity
Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 16 Physics: Principles with Applications, 7 th edition Giancoli 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely
More informationLook over Chapter 26 sections 17 Examples 3, 7. Look over Chapter 18 sections 15, 8 over examples 1, 2, 5, 8, 9,
Look over Chapter 26 sections 17 Examples 3, 7 Look over Chapter 18 sections 15, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What
More informationNote on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current
Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably
More informationA Deeper Look at Electricity A First Look at Magnets. NBSP Physical Science Institute Tuesday July 23, 2002
A Deeper Look at Electricity A First Look at Magnets NBSP Physical Science Institute Tuesday July 23, 2002 1 Currents: Thinking Deeper Our model for current so far: The current in a circuit depends on
More information1. How does a light bulb work?
AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, crosssectional area and length. 2. Relate the movement of charge to differences
More informationElectric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)
Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationFigure 1. In the following information, you will study these three physical quantities as they relate to simple electrical circuits.
Module 7 Ohm s Law INTRODUCTION In this experiment, you will study Ohm s Law, the most fundamental relation used in the analysis of electrical circuits. Ohm s Law relates the quantities of voltage, electric
More informationPhysics 1502: Lecture 9 Today s Agenda
Physics 1502: Lecture 9 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com
More informationTSOKOS LSN 51 TO 55 TEST REVIEW
IB HYSICS Name: DEIL HYSICS eriod: Date: # Marks: BADDEST CLASS ON CAMUS TSOKOS LSN 51 TO 55 TEST REIEW 4. This question is about forces on charged particles. (a) (b) A charged particle is situated in
More informationA Review of Circuitry
1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one
More informationUnit 3 BLM Answers UNIT 3 BLM 346
UNIT 3 BLM 346 Unit 3 BLM Answers BLM 33, Charge Transfer Diagrams 1. Positively charged objects should have more (+) than ( ). Negatively charged objects should have more ( ) than (+). 2. They must
More informationElectric Currents. Resistors (Chapters 2728)
Electric Currents. Resistors (Chapters 2728) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 VoltageCurrent Measurements... 8 7.6
More informationELECTRICITY Electric Fence Experiment.
ELECTRICITY Electric Fence Experiment. Can you guess what will happen? What would life be like without electricity? List 4 things that you would miss the most: 1) 2) 3) 4) Positive and Negative Charge
More informationWhat to Add Next time you update?
What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review
More information