PHYS 1444 Section 02 Review #2


 Kristin Newman
 3 years ago
 Views:
Transcription
1 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1
2 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on current carrying wire Force on moving charge Torque on a current loop Magnetic dipole moment And energy solenoid BiotSavart Law 2
3 Review Chapter 26 Terminal voltage Resistors in series Resistors in parallel Kirchoff s rules (example) RC circuits 3
4 262 Resistors in Series and in Parallel A series connection has a single path from the battery, through each circuit element in turn, then back to the battery. The current through each resistor is the same; the voltage drop depends on the resistance. The sum of the voltage drops across the resistors equals the battery voltage: 4
5 262 Resistors in Series and in Parallel A parallel connection splits the current; the voltage across each resistor is the same: 5
6 262 Resistors in Series and in Parallel Conceptual Example 263: An illuminating surprise. A 100W, 120V lightbulb and a 60W, 120V lightbulb are connected in two different ways as shown. In each case, which bulb glows more brightly? Ignore change of filament resistance with current (and temperature). Solution: a.) Each bulb sees the full 120V drop, as they are designed to do, so the 100 W bulb is brighter. b.) P = V 2 /R, so at constant voltage the bulb dissipating more power will have lower resistance. In series, then, the 60W bulb whose resistance is higher will be brighter. (More of the voltage will drop across it than across the 100W bulb). 6
7 262 Resistors in Series and in Parallel Conceptual Example 266: Bulb brightness in a circuit. The circuit shown has three identical light bulbs, each of resistance R. (a) When switch S is closed, how will the brightness of bulbs A and B compare with that of bulb C? (b) What happens when switch S is opened? Use a minimum of mathematics in your answers. Solution: a. When S is closed, the bulbs in parallel have half the resistance of the series bulb. Therefore, the voltage drop across them is smaller. Bulbs A and B will be equally bright, but much dimmer than C. b. With switch S open, no current flows through A, so it is dark. B and C are now equally bright, and each has half the voltage across it, so C is 7 somewhat dimmer than it was with the switch closed, and B is brighter.
8 262 Resistors in Series and in Parallel Example 268: Analyzing a circuit.(a) How much current is drawn from the battery? (b) what is the current in the 10 Ω resistor a.) Overall resistance is 10.3 Ω. The current is 9.0 V/10.3 Ω = 0.87 A b.) The voltage across the 4.8 Ω is 0.87*4.8=4.2V, so the current in the 10 Ω is I=V/ R=4.2/10=0.42A 8
9 Using Kirchhoff s Rules 1. Determine the flow of currents at the junctions. 2. Write down the current equation based on Kirchhoff s 1 st rule (conservtion of charge) at various junctions. 3. Choose closed loops in the circuit 4. Write down the potential in each interval of the junctions, keeping the sign properly. 5. Write down the potential equations for each loop (conservation of energy). 6. Solve the equations for unknowns. 9
10 263 Kirchhoff s Rules Example 269: Using Kirchhoff s rules. Calculate the currents I 1, I 2, and I 3 in the three branches of the circuit in the figure. Solution: You will have two loop rules and one junction rule (there are two junctions but they both give the same rule, and only 2 of the 3 possible loop equations are independent). Algebraic manipulation will 10 gives I 1 = A, I 2 = 2.6 A, and I 3 = 1.7 A.
11 Review Chapter 27 Magnets, magnetic fields Force on current carrying wire due to external field Force on moving charge due to external field Torque on a current loop Magnetic dipole moment and energy of dipole Hall effect 11
12 Example 27 4 Electron s path in a uniform magnetic field. An electron travels at a speed of 2.0x10 7 m/s in a plane perpendicular to a T magnetic field. Describe its path. What is the formula for the centripetal force? Since the magnetic field is perpendicular to the motion of the electron, the magnitude of the magnetic force is Since the magnetic force provides the centripetal force, we can establish an equation with the two forces Solving for r 12
13 Conceptual Example 2710: Velocity selector Some electronic devices and experiments need a beam of charged particles all moving at nearly the same velocity. This can be achieved using both a uniform electric field and a uniform magnetic field, arranged so they are at right angles to each other. Particles of charge q pass through slit S 1 If the particles enter with different velocities, show how this device selects a particular velocity, and determine what this velocity is. Figure 2721: A velocity selector: if v = E/B, the particles passing through S 1 make it through S 2. Solution: Only the particles whose velocities are such that the magnetic and electric forces exactly cancel will pass through both slits. We want qe = qvb, so v = E/ B. COULD I ADD GRAVITY TO THIS PROBLEM? 13
14 Torque on a Current Loop So what would be the magnitude of this torque? What is the magnitude of the force on the section of the wire with length a? F a =IaB The moment arm of the coil is b/2 So the total torque is the sum of the torques by each of the forces Where A=ab is the area of the coil What is the total net torque if the coil consists of N loops of wire? If the coil makes an angle θ w/ the field 14
15 Review Chapter 28 Magnetic field from long straight wire Magnetic force for two parallel wires Ampére s Law Ex solenoid BiotSavart Law 15
16 284 Ampère s Law Example 286: Field inside and outside a wire. A long straight cylindrical wire conductor of radius R carries a current I of uniform current density in the conductor. Determine the magnetic field due to this current at (a) points outside the conductor (r > R) and (b) points inside the conductor (r < R). Assume that r, the radial distance from the axis, is much less than the length of the wire. (c) If R = 2.0 mm and I = 60 A, what is B at r = 1.0 mm, r = 2.0 mm, and r = 3.0 mm? 16
17 Solution: We choose a circular path around the wire; if the wire is very long the field will be tangent to the path. a. The enclosed current is the total current; this is the same as a thin wire. B = µ 0 I/2πr. b. Now only a fraction of the current is enclosed within the path; if the current density is uniform the fraction of the current enclosed is the fraction of area enclosed: I encl = Ir 2 /R 2. Substituting and integrating gives B = µ 0 Ir/2πR 2. c. 1 mm is inside the wire and 3 mm is outside; 2 mm is at the surface (so the two results should be the same). Substitution gives B = 3.0 x 103 T at 1.0 mm, 6.0 x 103 T at 2.0 mm, and 4.0 x 103 T PHYS at Ian mm. Howley 17
18 Example 28 2 Suspending a wire with current. A horizontal wire carries a current I 1 =80A DC. A second parallel wire 20cm below it must carry how much current I 2 so that it doesn t fall due to the gravity? The lower has a mass of 0.12g per meter of length. Which direction is the gravitational force? Downward This force must be balanced by the magnetic force exerted on the wire by the first wire. Solving for I 2 18
19 Solenoid Magnetic Field Use Ampere s law to determine the magnetic field inside a long solenoid Let s choose the path abcd, far away from the ends The field outside the solenoid is negligible, and the internal field is perpendicular to the end paths, so these integrals also are 0 So the sum becomes: Thus Ampere s law gives us 19
20 Ch 25 Current flows through a resistor A) with no direction since it is not a vector. B) from any potential to any different potential. C) from high potential to low potential. D) from low potential to high potential. E) cannot be determined Which of the following cylindrical wires has the largest resistance? All wires are made of the same material. A) a wire of length L and diameter 2d B) a wire of length L and diameter d/2 C) a wire of length L/2 and diameter d D) a wire of length L and diameter d E) a wire of length L/2 and diameter 2d 20
21 Ch 26 Three identical resistors are connected in series to a battery. If the current of 12 A flows from the battery, how much current flows through any one of the resistors? A) 12 A B) 4 A C)36 A D) 24 A E) zero Fig shows a junction with currents labeled I1 to I6. Which of the following statements is correct? A) I1 + I3 = I6 + I4 B)I4 + I3 = I6 C) I1 + I2 = I6 + I4 D) I2 = I6 + I4 E) I6 + I5 = I1 21
22 Ch 27 A current carrying loop of wire lies flat on a table top. When viewed from above, the current moves around the loop in a counterclockwise sense. What is the direction of the magnetic field caused by this current, outside the loop? The magnetic field A) circles the loop in a clockwise direction. B) circles the loop in a counterclockwise direction. C) points straight up. D) points straight down. E) points toward the east. A wire is carrying current vertically downward. What is the direction of the force due to Earth's magnetic field on the wire? A)horizontally towards the north B)horizontally towards the south C) horizontally towards the east D) horizontally towards the west E) vertically upward 22
23 Ch 28 A high power line carrying 1000 A generates what magnetic field at the ground, 10 m away? A) T B) T C) T D) T E) T Two long parallel wires carry currents of 20 A and 5.0 A in opposite directions. The wires are separated by 0.20 m. What is the magnetic field midway between the two wires? A) T B) T C) T D) T E) T 23
24 Ch 29 The three loops of wire shown in Fig are all subject to the same uniform magnetic field that does not vary with time. Loop 1 oscillates back and forth as the bob in a pendulum, loop 2 rotates about a vertical axis, and loop 3 oscillates up and down at the end of a spring. Which loop, or loops, will have an induced emf? A) Loop 1 B) Loop 2 C) Loop 3 D) Loops 1 and 3 E) Loops 2 and 3 A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. If the magnet is dropped from this position what is the direction of the induced current in the coil? A) There is no current in the coil. B) counterclockwise C) clockwise D)Not enough information is provided. 24
PHYS 1102 EXAM  II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test
PHYS 1102 EXAM  II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED
More informationCh 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?
Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V
More informationPRACTICE EXAM 2 for Midterm 2
PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationChapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.
Chapter 27 Magnetism 271 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 271 Magnets and Magnetic Fields However, if you cut a
More informationClicker Session Currents, DC Circuits
Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases
More informationLouisiana State University Physics 2102, Exam 3 April 2nd, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More informationChapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields
Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get
More informationP202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova
P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)
More information1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will
More informationPRACTICE EXAM 1 for Midterm 2
PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness
More informationPhysics 2135 Exam 2 March 22, 2016
Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An airfilled
More informationHW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37
Fall 12 PHY 122 Homework Solutions #7 HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Chapter 26 Problem 34 Determine the magnitudes and directions of the currents in each resistor shown in
More informationPower lines. Why do birds sitting on a highvoltage power line survive?
Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high
More informationExam 2, Phy 2049, Spring Solutions:
Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have
More informationChapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.
Chapter 27 Magnetism 271 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 271 Magnets and Magnetic Fields However, if you cut a
More informationPHYSICS ASSIGNMENT ES/CE/MAG. Class XII
PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationExam 2 Fall 2014
1 95.144 Exam 2 Fall 2014 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.
More informationWelcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz
Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 18 on circuits and begin Chapter 19 (sections 1 and 8) on magnetic fields. There
More information= 8.89x10 9 N m 2 /C 2
PHY303L Useful Formulae for Test 2 Magnetic Force on a moving charged particle F B = q v B Magnetic Force on a current carrying wire F B = i L B Magnetic dipole moment µ = NiA Torque on a magnetic dipole:
More informationPhysics 2220 Fall 2010 George Williams THIRD MIDTERM  REVIEW PROBLEMS
Physics 2220 Fall 2010 George Williams THIRD MIDTERM  REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An
More informationThe next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:
PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.
More informationa. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire
Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiplechoice questions. The first 10 questions are the makeup Quiz. The remaining questions are
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationSolutions to PHY2049 Exam 2 (Nov. 3, 2017)
Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the
More informationPhysics 42 Exam 3 Spring 2016 Name: M T W
Physics 42 Exam 3 Spring 2016 Name: M T W Conceptual Questions & Shorty (2 points each) 1. Which magnetic field causes the observed force? 2. If released from rest, the current loop will move a. upward
More informationGeneral Physics (PHYC 252) Exam 4
General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 13, consider a car battery with 1. V emf and internal resistance r of. Ω that is
More informationMagnetic Fields; Sources of Magnetic Field
This test covers magnetic fields, magnetic forces on charged particles and currentcarrying wires, the Hall effect, the BiotSavart Law, Ampère s Law, and the magnetic fields of currentcarrying loops
More informationweek 8 The Magnetic Field
week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is
More informationMultiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields
Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the
More informationUnit 8: Electromagnetism
Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic
More informationMagnetic field and magnetic poles
Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and )are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,
More informationDe La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer
De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer Multiple Choice: 1. Which of the two arrangements shown has the smaller equivalent resistance between points a and
More informationPhysicsAndMathsTutor.com
Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram
More informationDownloaded from
Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns
More informationPHYS 272 Fall 2010 Thursday, December 16, 2010
PHYS 272 Fall 2010 Thursday, December 16, 2010 Final Exam The final exam has only this machinegraded part of 22 multiple choice questions. Each multiple choice problem is worth 10 points. Using a pencil,
More informationPhysics 208, Spring 2016 Exam #3
Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More informationLenz s Law (Section 22.5)
Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A  F 201 122 G  R 200 221 S  Z 205 128 20160221 Phys 1030 General Physics II (Gericke) 1 1) Charging
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More informationAgenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws
Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question
More informationMagnetic Fields Due to Currents
PHYS102 Previous Exam Problems CHAPTER 29 Magnetic Fields Due to Currents Calculating the magnetic field Forces between currents Ampere s law Solenoids 1. Two long straight wires penetrate the plane of
More information= e = e 3 = = 4.98%
PHYS 212 Exam 2  Practice Test  Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.
More informationAP Physics C 1998 Multiple Choice Questions Electricity and Magnetism
AP Physics C 1998 Multiple Choice Questions Electricity and Magnetism The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission
More informationExam III Solution: Chapters 18 20
PHYS 1420: College Physics II Fall 2006 Exam III Solution: Chapters 18 20 1. The anode of a battery A) has a positive charge, while the cathode has a negative charge. B) has a negative charge, while the
More informationPhys102 Final163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s
Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1 Q1. A 125 cm long string has a mass of 2.00 g and a tension of 7.00 N. Find the lowest resonant frequency of the string. A) 2.5 Hz B) 53.0 Hz C)
More informationMagnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?
Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B
More informationChapter 4  Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,
Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns
More informationMagnets and Electromagnetism
Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire
More informationPhysics 212 Question Bank III 2010
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic
More informationPHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)
PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009
More information2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c
2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c is a constant. a) Find the electric potential valid for
More informationPhysics 212 Midterm 2 Form A
1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 1019 C B. 6.4 1019 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th:  Reading: Chapter 30.630.8  Watch Videos:
More informationPhysics 106, Section 1
Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays
More informationPhysics 102 Spring 2007: Final Exam MultipleChoice Questions
Last Name: First Name: Physics 102 Spring 2007: Final Exam MultipleChoice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit
More informationExam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2
Exam 2 Solutions Prof. Pradeep Kumar Prof. Paul Avery Mar. 21, 2012 1. A portable CD player does not have a power rating listed, but it has a label stating that it draws a maximum current of 159.0 ma.
More informationLecture 31: MON 30 MAR Review Session : Midterm 3
Physics 2113 Jonathan Dowling Lecture 31: MON 30 MAR Review Session : Midterm 3 EXAM 03: 8PM MON 30 MAR in Cox Auditorium The exam will cover: Ch.26 through Ch.29 The exam will be based on: HW07 HW10.
More informationExam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014
Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal
More informationAP Physics C Mechanics Objectives
AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph
More informationPHY2054 Summer 2017 Final ExamVersion 2
PHY2054 Summer 2017 Final ExamVersion 2 MULTIPLE CHOICE. Please answer all questions by choosing the one alternative that best completes the statement or answers the question. 1) When two or more capacitors
More informationPHY2054 Summer 2017 Final ExamVersion 1
PHY2054 Summer 2017 Final ExamVersion 1 MULTIPLE CHOICE. Please answer all questions by choosing the one alternative that best completes the statement or answers the question. 1) In the figure below, a
More informationPS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions
PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,
More informationSECTION B Induction. 1. The rate of change of flux has which of the following units A) farads B) joules C) volts D) m/s E) webers
SECTION B Induction 1. The rate of change of flux has which of the following units ) farads B) joules C) volts D) m/s E) webers 2. For the solenoids shown in the diagram (which are assumed to be close
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationEvery magnet has a north pole and south pole.
Magnets  Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had
More informationPhys102 Lecture 16/17 Magnetic fields
Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic
More informationb) (4) How large is the current through the 2.00 Ω resistor, and in which direction?
General Physics II Exam 2  Chs. 19 21  Circuits, Magnetism, EM Induction  Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results
More informationDescribe the forces and torques exerted on an electric dipole in a field.
Learning Outcomes  PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2016
Physics 2212 GH Quiz #4 Solutions Spring 2016 I. (18 points) A bar (mass m, length L) is connected to two frictionless vertical conducting rails with loops of wire, in the presence of a uniform magnetic
More informationFigure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12 Ω resistor shown in the circuit of Figure 2 is:
Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3
More informationCircuits. PHY2054: Chapter 18 1
Circuits PHY2054: Chapter 18 1 What You Already Know Microscopic nature of current Drift speed and current Ohm s law Resistivity Calculating resistance from resistivity Power in electric circuits PHY2054:
More informationMidterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems
Third WileyPlus homework set is posted Ch. 20: 90 and Ch. 21: 14,38 (Due today at 11:45 pm) Midterms and finals from previous 4 years are now posted on the website (under Exams link). Next week s lab:
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationExam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.
Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationLouisiana State University Physics 2102, Exam 3, November 11, 2010.
Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and
More informationPhysics 212 Question Bank III 2006
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)
More informationPhysics 2401 Summer 2, 2008 Exam III
Physics 2401 Summer 2, 2008 Exam e = 1.60x1019 C, m(electron) = 9.11x1031 kg, ε 0 = 8.845x1012 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x1027 kg. n = nano = 109, µ = micro = 106, m =
More informationName: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the
More informationAP Physics 2 Electromagnetic Induction Multiple Choice
Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the
More informationMarch 11. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  32 Summary Magnetic
More informationChapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 28 Magnetic Fields Copyright 282 What Produces a Magnetic Field? 1. Moving electrically charged particles ex: current in a wire makes an electromagnet. The current produces a magnetic field that
More informationExam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.
Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular
More informationExam 2 Solutions. = /10 = / = /m 3, where the factor of
PHY049 Fall 007 Prof. Yasu Takano Prof. Paul Avery Oct. 17, 007 Exam Solutions 1. (WebAssign 6.6) A current of 1.5 A flows in a copper wire with radius 1.5 mm. If the current is uniform, what is the electron
More information1 2 U CV. K dq I dt J nqv d J V IR P VI
o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot
More informationA) I B) II C) III D) IV E) V
1. A square loop of wire moves with a constant speed v from a fieldfree region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two
More informationphysics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION
Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationParallel Resistors (32.6)
Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)
More informationCalculus Relationships in AP Physics C: Electricity and Magnetism
C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationLECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich
LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS Instructor: Kazumi Tolich Lecture 22 2! Reading chapter 22.5 to 22.7! Magnetic torque on current loops! Magnetic field due to current! Ampere s law! Current
More informationFig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.
1 (a) Fig. 2.1 shows a horizontal currentcarrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles
More informationChapter 4: Magnetic Field
Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,
More informationFIRST TERM EXAMINATION (07 SEPT 2015) Paper  PHYSICS Class XII (SET B) Time: 3hrs. MM: 70
FIRST TERM EXAMINATION (07 SEPT 205) Paper  PHYSICS Class XII (SET B) Time: 3hrs. MM: 70 Instructions:. All questions are compulsory. 2. Q.no. to 5 carry mark each. 3. Q.no. 6 to 0 carry 2 marks each.
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More information