Lenz s Law (Section 22.5)

Size: px
Start display at page:

Download "Lenz s Law (Section 22.5)"

Transcription

1 Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A - F G - R S - Z Phys 1030 General Physics II (Gericke) 1

2 1) Charging by contact and induction: Lecture 1 and Phys 1030 General Physics II (Gericke) 2

3 2) Coulombs Law: Lecture 2 F k q 1 r q 2 2 F 34 F net q 1 q 2 q 3 q 4 F 14 F 24 F F F F net F 34 F net F 24 F Phys 1030 General Physics II (Gericke) 3

4 3) The Electric Field: Lecture 3,4 E k q F net 2 r q 0 For a positive isolated point charge a positive test charge will move radially away from the charge Q. For a negative isolated point charge a positive test charge will move radially toward the charge Q. E Q k r r ˆ 2 Q Q E Q k r r ˆ Phys 1030 General Physics II (Gericke) 4

5 3) The Electric Field: Lecture 3,4 E k q F net 2 r q 0 For a positive isolated point charge a negative test charge will move radially toward the charge Q. For a negative isolated point charge a negative test charge will move radially away from the charge Q. E Q k r r ˆ 2 Q Q E Q k r r ˆ Phys 1030 General Physics II (Gericke) 5

6 4) The Electric Potential and Potential Energy: Lecture 6 V r Q k r E V d W electric q 0 V V V A B E mv mgh kx EPE Phys 1030 General Physics II (Gericke) 6

7 5) Electromotive Force and Current : Lecture 7 6) Ohm s Law: Lecture 7 V IR 7) Resistance and Resistivity: Lecture 7 R L A Phys 1030 General Physics II (Gericke) 7

8 8) Power and Power Dissipation: Lecture 7,8 9) Series and Parallel Resistor Circuits: Lecture 8,9 2 2 V P IV I IR I R R 10) Kirchoff s Rules: Lecture 9, Phys 1030 General Physics II (Gericke) 8

9 11) Magnetic Force on a Moving Charge: Lecture 11,12 F qvb sin B 12) Force on a Current in a Magnetic Field: Lecture 13,14 F ILB sin Phys 1030 General Physics II (Gericke) 9

10 13) Torque on a current carrying coil Lecture 13,14 IAB sin 14) Magnetic Fields Produced by Currents Lecture 14, 15 I 0 B 2 r T m A Phys 1030 General Physics II (Gericke) 10

11 15) Induced Current and Induced emf: Lecture 15, 16 E vbl 16) Magnetic Flux: Lecture Phys 1030 General Physics II (Gericke) 11

12 17) Faraday s Law: Lecture 16,17 E N t 18) Lenz s Law: Lecture 17, 18 (finish up today) Phys 1030 General Physics II (Gericke) 12

13 Faraday s Law (Section 22.4) Faraday s Law of Electromagnetic Induction The average emf induced in a coil of N loops is E N t Note that t is the average rate of change of through 1 loop! Any change in B, A or cos( ) will create an induced EMF Phys 1030 General Physics II (Gericke) 13

14 Lenz s Law (Section 22.5) Direction of induced current produces a magnetic field that opposes the change in flux. Area of loop increases: t 0 Induced I creates magnetic field out of page, opposite direction. Total magnetic field is reduced, a change which opposes the increase in flux Phys 1030 General Physics II (Gericke) 14

15 Lenz s Law (Section 22.5) For t 0 the induced I creates magnetic field into page (same direction to oppose the decrease)! Phys 1030 General Physics II (Gericke) 15

16 Lenz s Law (Section 22.5) LENZ S LAW: polarity of EMF The induced emf resulting from a changing Φ has a polarity that leads to an induced I whose direction is such that the induced B field opposes the original Φ change. Induced EMF Induced current Induced magnetic field opposing change in flux Phys 1030 General Physics II (Gericke) 16

17 Lenz s Law (Section 22.5) Using Lenz s Law: Reasoning Strategy 1. Determine whether the Φ that penetrates the coil is increasing or decreasing. 2. Find what the direction of the induced B field must be so that it can oppose the change in Φ by adding or subtracting from the original field. 3. Use RHR-2 to determine the direction of the induced I Phys 1030 General Physics II (Gericke) 17

18 Lenz s Law (Section 22.5) The EMF produced by a moving magnet A bar magnet is approaching a loop of wire. The external circuit consists of a resistance. Find the direction of the induced current and the polarity of the induced EMF. Reverse the magnet s direction of motion. What happens then? Reverse the magnet s orientation. What happens then? Phys 1030 General Physics II (Gericke) 18

19 Lenz s Law (Section 22.5) C&J A long straight wire lies on a table and carries a current I. As the drawing shows, a small circular loop of wire is pushed across the table from position 1 to position 2. Determine the direction of the induced current, clockwise or counterclockwise, as the loop moves past (a) position 1 and (b) position Phys 1030 General Physics II (Gericke) 19

20 i>clicker Lenz s Law (Section 22.5) Find the direction of I in each loop. Use CW, CCW or 0 to indicate the direction of the current for loops 1 to 5 A. CW, CCW, CCW, CCW, CW B. 0, CW, CW, CCW, 0 C. 0, CW, 0, CCW, 0 D. 0, CCW, 0, CW, 0 E. 0, CCW, CW, CCW, Phys 1030 General Physics II (Gericke) 20

21 i>clicker Lenz s Law (Section 22.5) Two circular coils of wire lie on a flat surface. The centers of the coils coincide. In the larger coil there is a switch and a battery. The smaller coil contains no switch and no battery. Describe the induced current that appears in the smaller coil when the switch in the larger coil is closed. A. It flows CCW, but only for a short period just after the switch is closed. B. It flows CW forever after the switch is closed. C. It flows CW, but only for a short period just after the switch is closed. D. It flows CCW forever after the switch is closed Phys 1030 General Physics II (Gericke) 21

FARADAY S AND LENZ LAW B O O K P G

FARADAY S AND LENZ LAW B O O K P G FARADAY S AND LENZ LAW B O O K P G. 4 3 6-438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Last time. Ampere's Law Faraday s law

Last time. Ampere's Law Faraday s law Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

More information

Agenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop

Agenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Lenz Law Physics 132: Lecture e 22 Elements of Physics II Agenda for Today Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 201: Lecture 1, Pg 1 Lenz s Law Physics 201:

More information

Physics 132: Lecture 15 Elements of Physics II Agenda for Today

Physics 132: Lecture 15 Elements of Physics II Agenda for Today Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:

More information

Physics 115. Induction Induced currents. General Physics II. Session 30

Physics 115. Induction Induced currents. General Physics II. Session 30 Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics

More information

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21

Motional EMF. Toward Faraday's Law. Phys 122 Lecture 21 Motional EMF Toward Faraday's Law Phys 122 Lecture 21 Move a conductor in a magnetic field Conducting rail 1. ar moves 2. EMF produced 3. Current flows 4. ulb glows The ig Idea is the induced emf When

More information

Our goal for today. 1. To go over the pictorial approach to Lenz s law.

Our goal for today. 1. To go over the pictorial approach to Lenz s law. Our goal for today 1. To go over the pictorial approach to Lenz s law. Lenz s Law Exposing a coil or loop to a changing magnetic flux will generate a current if the circuit is complete. The direction of

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website: Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Electromagnetic

More information

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website: Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Electromagnetic induction We saw that a magnetic field could be produced with an

More information

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems Third WileyPlus homework set is posted Ch. 20: 90 and Ch. 21: 14,38 (Due today at 11:45 pm) Midterms and finals from previous 4 years are now posted on the website (under Exams link). Next week s lab:

More information

Induced Electric Field

Induced Electric Field Lecture 18 Chapter 30 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external E-field» E-field generated by Σq i Magnetostatics» motion of q and i in external -field» -field generated by I Electrodynamics»

More information

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

More information

Induced Electric Field

Induced Electric Field Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications

More information

Physics 102: Lecture 10. Faraday s Law. Changing Magnetic Fields create Electric Fields. Physics 102: Lecture 10, Slide 1

Physics 102: Lecture 10. Faraday s Law. Changing Magnetic Fields create Electric Fields. Physics 102: Lecture 10, Slide 1 Physics 102: Lecture 10 Faraday s Law Changing Magnetic Fields create Electric Fields Physics 102: Lecture 10, Slide 1 Last Two Lectures Magnetic fields Forces on moing charges and currents Torques on

More information

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

Lecture 13.1 :! Electromagnetic Induction Continued

Lecture 13.1 :! Electromagnetic Induction Continued Lecture 13.1 :! Electromagnetic Induction Continued Lecture Outline:! Faraday s Law! Induced Fields! Applications! Textbook Reading:! Ch. 33.5-33.7 April 7, 2015 1 Announcements! Homework #10 due on Tuesday,

More information

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1 Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Clicker Question 11: A rectangular

More information

CHAPTER 29: ELECTROMAGNETIC INDUCTION

CHAPTER 29: ELECTROMAGNETIC INDUCTION CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

Motional EMF & Lenz law

Motional EMF & Lenz law Phys 102 Lecture 13 Motional EMF & Lenz law 1 Physics 102 recently Basic principles of magnetism Lecture 10 magnetic fields & forces Lecture 11 magnetic dipoles & current loops Lecture 12 currents & magneticfields

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area

More information

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law AP Physics C Unit 11: Electromagnetic Induction Part 1 - Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in

More information

LECTURE 17. Reminder Magnetic Flux

LECTURE 17. Reminder Magnetic Flux LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

More information

Induced Electric Field

Induced Electric Field Lecture 20 Chapter 30 Induced Electric Field This fool said some nonsense that the electric field can be produced from the magnetic field. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

More information

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM)

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) name Write your name also in the back of the last page. blazer id [a] PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) You may not open the textbook nor notebook. A letter size information may be used. A

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich

LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Heinrich Friedrich Emil Lenz 12 February 1804 10 February 1865 Announcements Assignments for Thursday, November 8th: - Reading: Chapter 33.1 - Watch

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

David J. Starling Penn State Hazleton PHYS 212

David J. Starling Penn State Hazleton PHYS 212 and and The term inductance was coined by Oliver Heaviside in February 1886. David J. Starling Penn State Hazleton PHYS 212 and We have seen electric flux: Φ E = E d A But we can define the magnetic flux

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

Physics of Everyday Phenomena. Chapter 14

Physics of Everyday Phenomena. Chapter 14 Physics of Everyday Phenomena W. Thomas Griffith Juliet W. Brosing Chapter 14 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Question 14.1 With magnets A) like

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

Induction and inductance

Induction and inductance PH -C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following

More information

Lecture 18: Faraday s Law & Motional EMF

Lecture 18: Faraday s Law & Motional EMF Outline: Lecture 18: Faraday s Law & Motional EMF More on Faraday s Law. Motional EMF. E = dφ B dt loop E dl = d dt surface B da Iclicker Question A circular loop of wire is placed next to a long straight

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

r where the electric constant

r where the electric constant 0. Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, grounding and charge conservation. b) Describe the motion of point charges when

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 1-3 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =

More information

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric

More information

Faraday s Law. Physics 102: Lecture 10. Exam 1 tonight. All you need is a #2 pencil, calculator, and your ID. CHEATING we will prosecute!

Faraday s Law. Physics 102: Lecture 10. Exam 1 tonight. All you need is a #2 pencil, calculator, and your ID. CHEATING we will prosecute! Physics 102: Lecture 10 Faraday s Law Changing Magnetic Fields create Electric Fields Exam 1 tonight Be sure to bring your ID and go to correct room All you need is a #2 pencil, calculator, and your ID

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

More information

Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 Question teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic

More information

r where the electric constant

r where the electric constant 1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

More information

3/31/2014. Resistors in series. Resistors in parallel. Ohm s Law. Review for Test 2. Electric Power (cont d) V IR. R constant I

3/31/2014. Resistors in series. Resistors in parallel. Ohm s Law. Review for Test 2. Electric Power (cont d) V IR. R constant I Ohm s Law eview for Test Ohm s law states that the current flowing through a piece of material is proportional to the voltage applied across the material. The resistance () is defined as the ratio of to.

More information

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them. AP Physics - Problem Drill 17: Electromagnetism Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. A house has a wall that has an area of 28 m

More information

Physics 1c Practical, Spring 2015 Hw 3 Solutions

Physics 1c Practical, Spring 2015 Hw 3 Solutions Physics 1c Practical, Spring 2015 Hw 3 Solutions April 16, 2015 1 Serway 31.79 (5 points) By Lenz s Law, current will flow in each of the two sub-loops to oppose the change in flux. One can easily see

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Physics 1402: Lecture 18 Today s Agenda

Physics 1402: Lecture 18 Today s Agenda Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iot-savart

More information

Physics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Induction Before we can talk about induction we need to understand magnetic flux. You can think of flux as the number of field lines passing through an area. Here is the formula: flux

More information

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS Instructor: Kazumi Tolich Lecture 22 2! Reading chapter 22.5 to 22.7! Magnetic torque on current loops! Magnetic field due to current! Ampere s law! Current

More information

AAST/AEDT. Electromagnetic Induction. If the permanent magnet is at rest, then - there is no current in a coil.

AAST/AEDT. Electromagnetic Induction. If the permanent magnet is at rest, then - there is no current in a coil. 1 AP PHYSICS C AAST/AEDT Electromagnetic Induction Let us run several experiments. 1. A coil with wire is connected with the Galvanometer. If the permanent magnet is at rest, then - there is no current

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Application Of Faraday s Law

Application Of Faraday s Law Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions

More information

Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

More information

Introduction: Recall what the Biot-Savart Law and, more generally, Ampere s Law say: Electric Currents Create Magnetic Fields

Introduction: Recall what the Biot-Savart Law and, more generally, Ampere s Law say: Electric Currents Create Magnetic Fields Electromagnetic Induction I really don t like the order in which your author presents the material in this chapter, so I m going put in a slightly different order. Introduction: Recall what the Biot-Savart

More information

ElectroMagnetic Induction

ElectroMagnetic Induction ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first

More information

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2 Exam 2 Solutions Prof. Pradeep Kumar Prof. Paul Avery Mar. 21, 2012 1. A portable CD player does not have a power rating listed, but it has a label stating that it draws a maximum current of 159.0 ma.

More information

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law - GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed

More information

HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37

HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Fall 12 PHY 122 Homework Solutions #7 HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Chapter 26 Problem 34 Determine the magnitudes and directions of the currents in each resistor shown in

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

Faraday s Law of Electromagnetic Induction

Faraday s Law of Electromagnetic Induction Faraday s Law of Electromagnetic Induction 2.1 Represent and reason The rectangular loop with a resistor is pulled at constant velocity through a uniform external magnetic field that points into the paper

More information

Chapter 5. Electromagnetic Induction

Chapter 5. Electromagnetic Induction Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

Induced Emf. Book pg

Induced Emf. Book pg Induced Emf Book pg 428-432 Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: History of Induction 1819 Oersted:

More information

Assignment 7 Solutions

Assignment 7 Solutions Assignment 7 Solutions PY 106 1. A single-turn rectangular wire loop measures 6.00 cm wide by 10.0 cm long. The loop carries a current of 5.00 A. The loop is in a uniform magnetic field with B = 5.00 10

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

Magnetism. and its applications

Magnetism. and its applications Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3 - Magnetic force, either attractive or repelling varies

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 19 Induced EMF and Motional EMF July 5-6, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We

More information