# Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2

Size: px
Start display at page:

Download "Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2"

Transcription

1 Exam 2 Solutions Prof. Pradeep Kumar Prof. Paul Avery Mar. 21, A portable CD player does not have a power rating listed, but it has a label stating that it draws a maximum current of ma. The player uses four 1.50 V batteries connected in series. What is the maximum power (in milliwatts) consumed? Answer: 954 Solution: The power is given by P = Ei = 6! = W. 2. A galvanometer has a coil resistance of 48.0 Ω. It is to be made into a voltmeter with a fullscale deflection equal to V. If the galvanometer deflects full scale for a current of ma, what size resistor should be placed in series with the galvanometer? Answer: MΩ Solution: We want the current to be ma when the galvanometer is placed across a 100 V source. Thus the total resistance must be 100 / 1.2!10 "4 = 833,000# = 0.833M#, including the 48.0 Ω resistor, which can be neglected. 3. Three resistors, R 1 = 4.0 Ω, R 2 = 3.0 Ω, and R 3 = 2.0 Ω, are connected in series to a 9.0 V battery. What is the power dissipated by R 2? Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2 = 1 2! 3 = 3W. 4. Three resistors, R 1 = 4.0 Ω, R 2 = 3.0 Ω, and R 3 = 2.0 Ω, are connected in parallel to a 9.0 V battery. What is the power dissipated by R 2? Answer: 27.0 W Solution: The current in R 2 is 9/3 = 3 A, so the power dissipated in R 2 is i 2 R 2 = 3 2! 3 = 27 W. 5. In a series circuit consisting of a 12.0 V emf, a 2.00 mf capacitor, a 1.00 kω resistor and a switch, what is the voltage across the capacitor at a time 2 s after the switch is closed? Answer: 7.59 V 1

3 9. Refer to the previous problem. What is the magnitude of the torque on this loop due to the magnetic field? Answer: N m Solution: The torque can be found from! = µbsin" = iabsin". Using the specified values, we obtain! = 2 " 1 2 " ( ) " 0.7 "1= You can also find the torque using the forces on the two wires in the previous problem and the moment arms. 10. A cyclotron with a magnetic field of 1.2 T is used to accelerate protons. How does the time for the protons to complete one orbit change when the kinetic energy increases so that the radius of their orbit changes from 10 cm to 22 cm? Answer: It remains the same Solution: The radius of the orbit is r = mv / eb and the time to complete one orbit is T = 2!r / v = 2! m / eb, which is independent of radius. 11. The current i in a long wire is going up as shown in the figure, but decreasing in magnitude. What is the direction of the induced current in the left loop and the right loop. (List the direction of the induced current in the left loop first.) Answer: counterclockwise, clockwise Solution: By the right hand rule for finding the direction of B field around a straight wire, we see that the B field is out of the page for the left loop and into the page for the right loop. Since the current in the wire is decreasing, by Lenz law the currents in the loops must reinforce the direction of the existing fields to maintain them. Thus the currents must be counterclockwise in the left loop and clockwise in the right loop. 3

4 12. In the figure, a conducting metal bar of mass 0.5 kg sliding along conducting rails is connected to a battery of emf 12 V and resistor R = 200 Ω to form a circuit. The rails are 30 cm apart and the entire arrangement is embedded in a uniform magnetic field 0.25 T directed into the page, as shown. Current flowing in the circuit exerts a force on the metal bar, but the induced emf exerts a force in the opposite direction. What is the maximum velocity v the bar can attain? Answer: 160 m/s Solution: The force acting on the metal bar is F = ilb = ELB / R. The bar will accelerate until the induced emf E ind = vlb is equal to the battery emf, when the current and thus the force becomes zero. Thus the maximum velocity is v = E / LB = 12 / 0.30! 0.25 X + X X X X X X X X X X X X X X X X X X X X X X X X X vx X X X X X RX X X X X X X X X X X X X ( ) = 160 m/s. 13. A long straight wire and a rectangular conducting loop lie in the same plane as shown. If the current in the long wire is decreasing, what is the direction of the net force exerted on the loop? Answer: up Solution: The changing B field causes a current to flow in the loop. By the right hand rule for currents, the direction of the B field is into the loop. Since the current is decreasing, Lenz law says that the current must flow in a direction to reinforce the B field. Thus the current flows counterclockwise. The magnetic forces acting on the near and far loop segments are in the opposite direction, but the net force is not zero because the segment closest to the wire is in a larger B field. The near segment thus determines the overall direction of force, which is upwards, according to the right hand rule for magnetic forces. 14. An 8.0 mh inductor and a 2.5 Ω resistor are wired in series to a 23.6 V ideal battery. A switch in the circuit is closed at time 0, at which time the current is 0. At a time 5.4 msec after the switch is thrown the potential difference across the inductor is: Answer: 4.4 V Solution: The current in the LR circuit is V = E 1! e!tr/ L ( ) = 23.6( 1! e!0.0054/0.02 ) = 4.4 V. 15. Refer to the previous problem. How much energy is stored in the inductor after the switch has been closed a long time? Answer: 0.36 J Solution: After a long time, the current is not changing and is i = E / R = 23.6 / 2.5 = 9.44 A. The energy in the inductor is U = 1 2 Li2 = 0.5! 0.008! = 0.36 J. 4

5 16. A current of 5.0 A passes through a 1.5 H inductor. The emf in the circuit is then adjusted so that the current changes steadily until it reaches 5.0 A in the opposite direction. During the process, an average emf of 100 volts is measured across the inductor. How much time was required for the current-reversal? Answer: 150 ms Solution: The emf induced in the inductor is E ind = L!i /!t = 100 V, where the average rate of change of the current!i /!t is!i /!t = 5+ 5 and is easily found to be 150 ms. ( ) /!t = 10 /!t. The time!t is the only unknown 17. An RL circuit with resistance 100 Ω is connected in series to a battery with emf 12 V. When the circuit has been connected for 6.0 ms the current is measured to be 40 ma. What is the inductance L? Answer: H Solution: In an RL circuit, the current grows as i = i max 1! e!tr/ L Thus e!tr/ L = 2, which yields L = H. 3 ( ), where i max = E / R = 0.12 A. 18. A solenoid of length 75 cm and diameter 8.0 cm is wound with 25 turns per cm of wire. The current in the wire is decreasing at a rate of 150 A/s. What is the induced emf in the entire solenoid? Answer: 4.4 V Solution: The induced emf in the coil is E ind = N!" /!t, where N is the number of turns in the solenoid and! = "r 2 B. But the B field is given by B = µ 0 ni, where n = 2500 is the number of turns per m and i is the current. Here N = 25! 75 = Putting it all together yields E ind = Nµ 0!r 2 n "i = 1875# ( #10\$7 ) # ( 3.14 # ) # 2500 #150 = 4.43 V "t 19. A hair drier has a power rating of 1500 W when plugged into a standard 120 V AC receptacle. What is the maximum instantaneous current the hair drier must withstand? Answer: 17.7 A Solution: The rms current is i rms = 1500 / 120 = 12.5 A. The maximum current is therefore i max = 12.5! 2 = 17.7 A. 5

6 20. A 2.0 kw heater is designed to be connected to a 120 V standard AC receptacle. What is the power dissipated if it is connected instead to a 120 V DC source? Answer: 2.0 kw Solution: Average power is related to rms voltage and current the same as DC power is related to DC voltage and current. Thus P = 2.0 kw. 6

### Exam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014

Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal

### PHYS 241 EXAM #2 November 9, 2006

1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

### Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

### PRACTICE EXAM 2 for Midterm 2

PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?

### Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An

### a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

### Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

### 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

### Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e

Exam 3 Solutions Prof. Paul Avery Prof. Zongan iu Apr. 27, 2013 1. An electron and a proton, located far apart and initially at rest, accelerate toward each other in a location undisturbed by any other

### Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

### Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

### Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

### The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

### First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

First Name: Last Name: Section: n 1 March 26, 2003 Physics 202 EXAM 2 Print your name and section clearly on all five pages. (If you do not know your section number, write your TA s name.) Show all work

### PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

### P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

### PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test

PHYS 1102 EXAM - II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED

### University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

### Physics 1308 Exam 2 Summer Instructions

Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

### PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

### 2006 #3 10. a. On the diagram of the loop below, indicate the directions of the magnetic forces, if any, that act on each side of the loop.

1992 1 1994 2 3 3 1984 4 1991 5 1987 6 1980 8 7 9 2006 #3 10 1985 2006E3. A loop of wire of width w and height h contains a switch and a battery and is connected to a spring of force constant k, as shown

### Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

### Exam 2 Solutions. ε 3. ε 1. Problem 1

Exam 2 Solutions Problem 1 In the circuit shown, R1=100 Ω, R2=25 Ω, and the ideal batteries have EMFs of ε1 = 6.0 V, ε2 = 3.0 V, and ε3 = 1.5 V. What is the magnitude of the current flowing through resistor

### Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

### Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

### Physics 208, Spring 2016 Exam #3

Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

### Physics 106, Section 1

Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

### Chapter 12. Magnetism and Electromagnetism

Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

### Physics 2B Winter 2012 Final Exam Practice

Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly

### (a) zero. B 2 l 2. (c) (b)

1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

### PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

### A) I B) II C) III D) IV E) V

1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

### AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

### ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved

### On my honor, I have neither given nor received unauthorized aid on this examination.

Instructor(s): F.E. Dunnam PHYSICS DEPARTMENT PHY 2054 2nd Exam 08 July 2008 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination. YOUR

### Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

### Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

### Physics 2135 Exam 2 October 20, 2015

Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

### Physics 102 Exam 2 Spring Last Name: First Name Network-ID

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

### Louisiana State University Physics 2102, Exam 3, November 11, 2010.

Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and

### Lenz s Law (Section 22.5)

Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A - F 201 122 G - R 200 221 S - Z 205 128 2016-02-21 Phys 1030 General Physics II (Gericke) 1 1) Charging

### ( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) =

Exam 3 Solutions Prof. Paul Avery Prof. Pradeep Kumar Apr. 6, 014 1. Four charges are placed along a straight line each separated by a distance L from its neighbor. The order of the charges is +Q, Q, Q,

### Physics 24 Exam 2 March 18, 2014

Exam Total / 200 Physics 24 Exam 2 March 18, 2014 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. You need to store electrical

### PHY2054 Exam II, Fall, Solutions

PHY2054 Exam II, Fall, 2011 Solutions 1.) A 5 kω resistor in series with an uncharged capacitor C is connected to a 9 V battery. 3 seconds after the connection, the voltage across the capacitor is 3 V.

### Physics 2135 Exam 2 March 22, 2016

Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

### Solution for Fq. A. up B. down C. east D. west E. south

Solution for Fq A proton traveling due north enters a region that contains both a magnetic field and an electric field. The electric field lines point due west. It is observed that the proton continues

### NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A )

NAME: PHYSCS 6B SPRNG 2011 FNAL EXAM ( VERSON A ) Choose the best answer for each of the following multiple-choice questions. There is only one answer for each. Questions 1-2 are based on the following

### = 8.89x10 9 N m 2 /C 2

PHY303L Useful Formulae for Test 2 Magnetic Force on a moving charged particle F B = q v B Magnetic Force on a current carrying wire F B = i L B Magnetic dipole moment µ = NiA Torque on a magnetic dipole:

### Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the

### 11/21/2011. The Magnetic Field. Chapter 24 Magnetic Fields and Forces. Mapping Out the Magnetic Field Using Iron Filings

Chapter 24 Magnetic Fields and Forces Topics: Magnets and the magnetic field Electric currents create magnetic fields Magnetic fields of wires, loops, and solenoids Magnetic forces on charges and currents

### Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Your name sticker with exam code Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe SIGNATURE: 1. The exam will last from 4:00 p.m. to 7:00 p.m. Use a #2 pencil to make entries on the

### Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Last Name: First Name: Physics 102 Spring 2006: Final Exam Multiple-Choice Questions For questions 1 and 2, refer to the graph below, depicting the potential on the x-axis as a function of x V x 60 40

### Last time. Ampere's Law Faraday s law

Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

### Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

### ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

### Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

### Induction and Inductance

Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

### PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

### Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

### 1 cm b. 4.4 mm c. 2.2 cm d. 4.4 cm v

PHY 112: General Physics M. F. Thorpe T, Th 7:40-8:55am Fall 2006 Department of Physics Arizona State University Tempe AZ Final, Friday 8 December from 7:40am -> 9.30am All questions carry equal weight.

### (D) Blv/R Counterclockwise

1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is

### HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37

Fall 12 PHY 122 Homework Solutions #7 HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Chapter 26 Problem 34 Determine the magnitudes and directions of the currents in each resistor shown in

This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows

### AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

Question 6.1: Predict the direction of induced current in the situations described by the following Figs. 6.18(a) to (f ). (a) (b) (c) (d) (e) (f) The direction of the induced current in a closed loop

### Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

### Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

### Physics 212 Midterm 2 Form A

1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

### Version The diagram below represents lines of magnetic flux within a region of space.

1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

### De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer

De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer Multiple Choice: 1. Which of the two arrangements shown has the smaller equivalent resistance between points a and

### General Physics (PHYC 252) Exam 4

General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 1-3, consider a car battery with 1. V emf and internal resistance r of. Ω that is

### Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.

Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the

### Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

### Lecture 31: MON 30 MAR Review Session : Midterm 3

Physics 2113 Jonathan Dowling Lecture 31: MON 30 MAR Review Session : Midterm 3 EXAM 03: 8PM MON 30 MAR in Cox Auditorium The exam will cover: Ch.26 through Ch.29 The exam will be based on: HW07 HW10.

### Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Last Name: First Name: Physics 102 Spring 2007: Final Exam Multiple-Choice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit

### PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM)

name Write your name also in the back of the last page. blazer id [a] PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) You may not open the textbook nor notebook. A letter size information may be used. A

### Chapter In Fig , the magnetic flux through the loop increases according to the relation Φ B. =12.0t

Chapter 30 30.1 In Fig. 30-37, the magnetic lux through the loop increases according to the relation = 6.0t 2 + 7.0t where the lux is in milliwebers and t is in seconds. (a) What is the magnitude o the

### Physics 102, Learning Guide 4, Spring Learning Guide 4

Physics 102, Learning Guide 4, Spring 2002 1 Learning Guide 4 z B=0.2 T y a R=1 Ω 1. Magnetic Flux x b A coil of wire with resistance R = 1Ω and sides of length a =0.2m and b =0.5m lies in a plane perpendicular

### 8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

General Physics II Exam 2 - Chs. 18B 21 - Circuits, Magnetism, EM Induction - Oct. 3, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

### PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

### Gravity Electromagnetism Weak Strong

19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

### Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

### LECTURE 17. Reminder Magnetic Flux

LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

### AP Physics C. Magnetism - Term 4

AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

### Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

LJPS Gurgaon 1. An electron beam projected along +X axis, experiences a force due to a magnetic field along +Y axis. What is the direction of the magnetic field? Class XII- Physics - Assignment Topic:

### PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

### PHYS 2326 University Physics II Class number

PHYS 2326 University Physics II Class number HOMEWORK- SET #1 CHAPTERS: 27,28,29 (DUE JULY 22, 2013) Ch. 27.======================================================= 1. A rod of 2.0-m length and a square

### Electromagnetic Induction

Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional

### Physics 2212 GH Quiz #4 Solutions Spring 2016

Physics 2212 GH Quiz #4 Solutions Spring 2016 I. (18 points) A bar (mass m, length L) is connected to two frictionless vertical conducting rails with loops of wire, in the presence of a uniform magnetic

### Induction and Inductance

Welcome Back to Physics 1308 Induction and Inductance Heinrich Friedrich Emil Lenz 12 February 1804 10 February 1865 Announcements Assignments for Thursday, November 8th: - Reading: Chapter 33.1 - Watch

### Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

### Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

### Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

### Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

### b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

General Physics II Exam 2 - Chs. 19 21 - Circuits, Magnetism, EM Induction - Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results