Last time. Ampere's Law Faraday s law


 Lucas Frederick Williams
 4 years ago
 Views:
Transcription
1 Last time Ampere's Law Faraday s law 1
2 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface spanned by the loop changes with time. ε dφ B where B S B nda N Minus sign indicates the sense of EMF: Lenz s Law Decide on which way n goes Fixes sign of B N RHR determines the positive direction for EMF
3 How to use Faraday s law to determine the induced current direction n n 1. define the direction of ; can be any of the two normal direction, e.g. point to right. determine the sign of Φ. Here Φ>0 3. determine the sign of Φ. Here Φ >0 N 4. determine the sign of using faraday s law. Here <0 5. RHR determines the positive direction for EMF If >0, current follow the direction of the curled fingers. If <0, current goes to the opposite direction of the curled fingers. 3
4 Today Faraday s law Inductance and RL (RLC) circuit 4
5 Conducting Loop in a Changing Magnetic Field Induced EMF has a direction such that it opposes the change in magnetic flux that produced it. approaching Magnetic moment created by induced currrent I repels the bar magnet. Force on ring is repulsive. moving away Magnetic moment created by induced currrent I attracts the bar magnet. Force on ring is attractive. 5
6 Induced Electric Field from Faraday s Law EMF is work done per unit charge: ε W / q If work is done on charge q, electric field E must be present: ε E ds nc W q Enc ds Rewrite Faraday s Law in terms of induced electric field: E nc ds dφ This form relates E and B! B B Note that E ds 0for E fields generated by charges at rest (electrostatics) since this would correspond to the potential difference between a point and itself. => Static E is conservative. The induced E by magnetic flux changes is nonconservative. 6
7 iclicker Question The magnetic field is decreasing, what s the direction of the induced currents in the closed rectangular loop? A. Clockwise B. Counterclockwise C. No induced currents. 7
8 6D11 Jumping Ring Is there any differences in the two rings? Why one can jump up, the other can t? ZL4kbBIf39s 8
9 iclicker Question The magnetic field is fixed, what s the direction of the induced currents in the closed rectangular loop? A. Clockwise B. Counterclockwise C. No induced currents. 9
10 Example At 1, 3, and 5, B is not changing. So there is no induced emf. At, B is increasing into page. So emf is induced to produce a counterclockwise current. At 4, B in decreasing into page. So current is clockwise. 10
11 iclicker Question A current directed toward the top of the page and a rectangular loop of wire lie in the plane of the page. Both are held in place by an external force. If the current I is decreasing, what is the direction of the magnetic force on the left edge of the loop? a. Toward the right b. Toward the left c. Toward top of page d. Toward bottom of page e. No force acts on it. I 11
12 iclicker Question A current directed toward the top of the page and a circular loop of wire lie in the plane of the page. If a clockwise current is induced in the loop by the current I, what can you conclude about it? a. I is increasing b. I is decreasing c. I remains constant d. I is discontinuous e. Nothing can be said. I 1
13 Inductance emf bat R emf coil emf d mag emf 0 N R d di Increasing I increasing B emf bat emf ind R L di emf ind N r l B 0 i l L inductance, or selfinductance 0N L R d Unit of inductance L: Henry = Volt. second/ampere 13 Inductance resists changes in current
14 Demos: 6C07 Energy Stored in an Inductive Circuit 14
15 Circuit Analysis Tips Simplify using equivalent resistors Label currents with arbitary directions If the calculated current is negative, the real direction is opposite to the one defined by you. Apply Junction Rule to all the labeled currents. Useful when having multiple loops in a circuit. Choose independent loops and define loop direction Imagine your following the loop and it s direction to walk around the circuit. Use Loop Rule for each single loop If current I direction across a resistor R is the same as the loop direction, potential drop across R is V = I R, otherwise, V = I R For a device, e.g. battery or capacitor, rely on the direction of the electric field in the device and the loop direction to determine the Potential drop across the device Solve simultaneous linear equations
16 Potential Difference Across Inductor + V I r internal resistance V I Analogous to a battery An ideal inductor has r=0  All dissipative effects are to be included in the internal resistance (i.e., those of the iron core if any) di 0 IR L 0 di 0 IR L 0 16
17 RL Circuits Starting Current 1. Switch to e at t=0 As the current tries to begin flowing, selfinductance induces back EMF, thus opposing the increase of I. +. Loop Rule: di IR L 3. Solve this differential equation 0  di I 1 e, V L e R t /( L / R) t /( L / R) L τ=l/r is the inductive time constant L / R T m / A T m / A V / A s 17
18 Remove Battery after Steady I already exists in RL Circuits 1. Initially steady current I o is flowing: 3. Loop Rule: IR I R R 0 1. Switch to f at t=0, causing back EMF to oppose the change. di L Solve this differential equation t /( L / R) I e R di VL L e t /( L / R) like discharging a capacitor I cannot instantly become zero! Selfinduction 18
19 Behavior of Inductors Increasing Current Initially, the inductor behaves like a battery connected in reverse. After a long time, the inductor behaves like a conducting wire. Decreasing Current Initially, the inductor behaves like a reinforcement battery. After a long time, the inductor behaves like a conducting wire. 19
20 Energy Stored By Inductor 1. Switch on at t=0 As the current tries to begin flowing, selfinductance induces back EMF, thus opposing the increase of I. +. Loop Rule: di IR L 03. Multiply through by I Rate at which battery is supplying energy di I I R LI Rate at which energy is dissipated by the resistor dum Rate at which energy is stored in inductor L 1 di LI U m LI 0
21 Where is the Energy Stored? Energy must be stored in the magnetic field! Energy stored by a capacitor is stored in its electric field Consider a long solenoid where B 0 ni, L 0 0n Al B Um LI 0n Al I Al area A So energy density of the magnetic field is ue u 1 0E m Um Al 1 B 0 (Energy density of the electric field) length l 1
22 iclicker Question The switch in this circuit is initially open for a long time, and then closed at t = 0. What is the magnitude of the voltage across the inductor just after the switch is closed? a) zero b) V c) R / L d) V / R e) V
23 Transformer emf loop emf N AC prim emf sec N N sec prim emf AC Energy conservation: I sec emf sec I prim emf AC I prim N N sec prim I sec 3
24 Two Bulbs Near a Solenoid Varying B is created by AC current in a solenoid What is the current in this circuit? mag 0 sin t emf I d emf emf cost emf R emf R 0 cos t 0 Advantage of using AC: Currents and emf s behave as sine and cosine waves. 4
25 Two Bulbs Near a Solenoid Add a thick wire: Loop 1: emf R I R I I 1 Loop 1 Loop : R I 0 I 0 Node: I1 I I3 I 1 I1 I3 emf R 1 I Loop I 3 5
26 Exercise 6
27 Changing Area and B Simultaneously emf emf d mag mag db R BR BR dr emf due to noncoulomb electric field What is the second term due to? Magnetic force! Motional emf: F qe qv E vb emf vbl B 7
28 Old question: Why use HV to transport electricity? Single home current: 100 A service V wires =IR wires Transformer: emf HV I HV = emf home I home Single home current in HV: <0.1 A Power loss in wires ~ I 8
29 From Kirchhoff s Loop Rule Q di L 0 C (Ideal) LC Circuit I From Energy Conservation same dq Q 1 Q E LI peak const Q Q cos( t ) I dq peak. C C de 0 Q dq di LI 0 d Q 0 1 LC C Q 0 0Q peak sin( 0t ) Q di L 0 C harmonic oscillator with angular frequency 1 Natural Frequency 0 LC
30 LC Oscillations No Resistance = No dissipation Q 1 U E, U B LI, I C dq
31 Backups 31
32 Electric Field in a Nonuniform Ring E NC E C E NC emf E emf I R E E tot emf NC NC dl E d C const r ENC E r C d l r d 3
33 iclicker Question The switch in this circuit is closed at t = 0. What is the magnitude of the voltage across the resistor a long time after the switch is closed? a) zero b) V c) R / L d) V / R e) V 33
34 iclicker Question The switch in this circuit has been open for a long time. Then the switch is closed at t = 0. What is the magnitude of the current through the resistor immediately after the switch is closed? a) zero b) V / L c) R / L d) V / R e) V / R 34
Last time. Gauss' Law: Examples (Ampere's Law)
Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iotsavart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationHandout 10: Inductance. SelfInductance and inductors
1 Handout 10: Inductance SelfInductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This
More informationInductance, RL and RLC Circuits
Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic
More informationiclicker: which statements are correct?
iclicker: which statements are correct? 1. Electric field lines must originate and terminate on charges 2. Magnetic field lines are always closed A: 1&2 B: only 1 C: only 2 D: neither 2 Inductive Efield:
More informationElectromagnetic Induction (Chapters 3132)
Electromagnetic Induction (Chapters 313) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits
More informationLenz s Law (Section 22.5)
Lenz s Law (Section 22.5) : Thursday, 25 of February 7:00 9:00 pm Rooms: Last Name Room (Armes) Seats A  F 201 122 G  R 200 221 S  Z 205 128 20160221 Phys 1030 General Physics II (Gericke) 1 1) Charging
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationInductance, RL Circuits, LC Circuits, RLC Circuits
Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance
More informationCHAPTER 29: ELECTROMAGNETIC INDUCTION
CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric
More information/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:
Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:
More informationPhysics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 301 Announcement Quiz 4 will be next week. The Final
More informationInductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits
Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying
More informationMagnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned
Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying
More informationMagnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves. Reading Journals for Tuesday from table(s)
PHYS 2015  Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS
More informationYell if you have any questions
Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored
More informationChapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.
Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More informationLouisiana State University Physics 2102, Exam 3 April 2nd, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More informationChapter 32. Inductance
Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered selfinductance Unit of
More informationChapter 30. Inductance
Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationExam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field
Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,
More informationPHYS 202 Notes, Week 6
PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic
More informationElectromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance
Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic
More informationLecture 10 Induction and Inductance Ch. 30
Lecture 10 Induction and Inductance Ch. 30 Cartoon  Faraday Induction Opening Demo  Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR
More informationExam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.
Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular
More informationSelfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current.
Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit element called an
More informationChapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1
Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and
More informationActive Figure 32.3 (SLIDESHOW MODE ONLY)
RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor
More informationChapter 30 Self Inductance, Inductors & DC Circuits Revisited
Chapter 30 Self Inductance, Inductors & DC Circuits Revisited SelfInductance and Inductors Self inductance determines the magnetic flux in a circuit due to the circuit s own current. B = LI Every circuit
More informationPhysics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/
Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz
More informationPhysics 11b Lecture #13
Physics 11b Lecture #13 Faraday s Law S&J Chapter 31 Midterm #2 Midterm #2 will be on April 7th by popular vote Covers lectures #8 through #14 inclusive Textbook chapters from 27 up to 32.4 There will
More informationRecap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J:
Class 13 : Induction Phenomenon of induction and Faraday s Law How does a generator and transformer work? Self and mutual inductance Energy stored in Bfield Recap (1) Maxwell s Equations describe the
More informationAAST/AEDT. Electromagnetic Induction. If the permanent magnet is at rest, then  there is no current in a coil.
1 AP PHYSICS C AAST/AEDT Electromagnetic Induction Let us run several experiments. 1. A coil with wire is connected with the Galvanometer. If the permanent magnet is at rest, then  there is no current
More informationChapters 34,36: Electromagnetic Induction. PHY2061: Chapter
Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 3435 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators
More informationSolutions to PHY2049 Exam 2 (Nov. 3, 2017)
Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive
More informationElectromagnetic Induction
Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current
More informationPhysics Will Farmer. May 5, Physics 1120 Contents 2
Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................
More informationELECTROMAGNETIC INDUCTION AND FARADAY S LAW
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic
More information1 2 U CV. K dq I dt J nqv d J V IR P VI
o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot
More informationSelfInductance. Φ i. Selfinduction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 111
Lecture  SelfInductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again
More informationr where the electric constant
1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationLecture 13.2 :! Inductors
Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.633.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th:  Reading: Chapter 30.630.8  Watch Videos:
More informationInduced e.m.f. on solenoid itself
Induced e.m.f. Consider a loop of wire with radius r inside a long enoid Solenoid: N# of loops, ltotal length nn/l I I (t) What is the e.m.f. generated in the loop? Find inside enoid: E.m.f. generated
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter
More informationChapter 32. Inductance
Chapter 32 Inductance Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationPHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is
More informationPhysics 1c Practical, Spring 2015 Hw 3 Solutions
Physics 1c Practical, Spring 2015 Hw 3 Solutions April 16, 2015 1 Serway 31.79 (5 points) By Lenz s Law, current will flow in each of the two subloops to oppose the change in flux. One can easily see
More informationPhysics / Higher Physics 1A. Electricity and Magnetism Revision
Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationElectricity & Magnetism
Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B
More informationFaraday s Law; Inductance
This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, selfinductance, inductance, RL circuits, and energy in a magnetic field, with some
More informationInduction and inductance
PH C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following
More informationINDUCTANCE Self Inductance
NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationLecture 30: WED 04 NOV
Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,
More informationPhysics 2020 Exam 2 Constants and Formulae
Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67
More informationPhysics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)
Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires BiotSavart Law Examples: ring,
More informationPhysics 2112 Unit 18
Physics 2112 Unit 18 Today s Concepts: A) Induction B) Circuits Electricity & Magnetism ecture 18, Slide 1 Where we are.. Just finished introducing magnetism Will now apply magnetism to AC circuits Unit
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationLecture 39. PHYC 161 Fall 2016
Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS  response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationChapter 5. Electromagnetic Induction
Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field
More informationChapter 5: Electromagnetic Induction
Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,
More informationa. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire
Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiplechoice questions. The first 10 questions are the makeup Quiz. The remaining questions are
More informationChapter 7. Electrodynamics
Chapter 7. Electrodynamics 7.2 Electromagnetic Induction 7.2.1 Faraday's Law In 1831 Michael Faraday reported on a series of experiments: Experiment 1. He pulled a loop of wire to the right through a magnetic
More informationInductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationChapter 30 Inductance and Electromagnetic Oscillations
Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 SelfInductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,
More informationLecture 22. Inductance. Magnetic Field Energy.
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationChapter 23: Magnetic Flux and Faraday s Law of Induction
Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the
More informationn Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A
Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical
More informationPhysics 208, Spring 2016 Exam #3
Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More informationr where the electric constant
0. Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, grounding and charge conservation. b) Describe the motion of point charges when
More informationCalculus Relationships in AP Physics C: Electricity and Magnetism
C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the
More informationPES 1120 Spring 2014, Spendier Lecture 35/Page 1
PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3  LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We
More informationAssessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)
NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement
More informationChapter 9 FARADAY'S LAW Recommended Problems:
Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want
More informationLast Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,
Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.
More informationYell if you have any questions
Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P361 Before Starting All of your grades should now be posted
More informationInduction and Inductance
Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only
More informationLast Time. Magnetic Field of a Straight Wire Magnetic Field of a Current Loop Magnetic Dipole Moment Bar Magnet Electron Spin
Last Time Magnetic Field of a Straight Wire Magnetic Field of a Current Loop Magnetic Dipole Moment Bar Magnet Electron Spin 1 Today Equilibrium vs. Steady State in a Circuit What is "used up" in a circuit?
More informationLecture 24. April 5 th, Magnetic Circuits & Inductance
Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.111.5, Pages 331338 Chapter 12.112.4, Pages 341349 Chapter 12.712.9,
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationSUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.
SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationYell if you have any questions
Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P361 efore Starting All of your grades should now be posted
More informationElectrical polarization. Figure 195 [1]
Electrical polarization Figure 195 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More informationFundamentals of Engineering Exam Review Electromagnetic Physics
Dr. Gregory J. Mazzaro Spring 2018 Fundamentals of Engineering Exam Review Electromagnetic Physics (currently 57% of FE exam) THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston,
More information11 Chapter. Inductance and Magnetic Energy
11 Chapter Inductance and Magnetic Energy 11.1 Mutual Inductance... 113 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 115 11.2 SelfInductance... 116 Example 11.2 SelfInductance
More informationMagnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid
Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.
More informationPHYS 241 EXAM #2 November 9, 2006
1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages
More informationAP Physics C Unit 11: Electromagnetic Induction. Part 1  Faraday s Law and Lenz s Law
AP Physics C Unit 11: Electromagnetic Induction Part 1  Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in
More information