# Chapter 30 Inductance and Electromagnetic Oscillations

Size: px
Start display at page:

Transcription

1 Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter Mutual Inductance: Self-Inductance: 2, 3, & Energy Stored in a Magnetic Field: 5, 6, & LR Circuit: 8, 9, & LC Circuits and Electromagnetic Oscillations: 11, 12, & LC Oscillations with Resistance (LRC Circuit): 14 & 15 Faraday s Law: Changing current in a circuit will induce emf in that circuit as well as others nearby Self-Inductance: Circuit induces emf in itself Mutual Inductance: Circuit induces emf in second circuit 1

2 30-1 Mutual Inductance emf induced in circuit 2 by changing currents in circuit 1, through mutual inductance: The mutual inductance M depends only on the geometry of the two-circuit system subscripts are omitted, as M 21 = M 12 Pre Inductance Review Review the BIG 4 (Gauss 2, Faraday, Amperes) Determine B for a solenoid Solve for the current in the solenoid Determine the magnetic flux in the solenoid Determine the self inductance = 1 Ω s 28.5 Magnetic Field of a Solenoid and a Toroid Ampère s law can be used to calculate the magnetic field in situations with a high degree of symmetry. 2

3 IMPORTANT NOTE: n is equal to the number of loops per unit length (aka. Loop Density). It is NOT the number of wires! 30-1 Mutual Inductance Units of inductance: Henry = 1 Ω s 3

4 30-2 Self-Inductance emf induced through self-inductance: The inductance L is a proportionality constant that depends on the geometry of the circuit Magnetic materials will change selfinductance by changing magnetic flux Mutual Inductance vs. Self-Inductance 30-3 Energy Stored in a Magnetic Field Work must be done to create current through inductor This changes the energy stored in the inductor Starting from zero current: 4

5 30-3 Energy Stored in a Magnetic Field The energy in a solenoid depends on the current, and therefore on the magnetic field created by the current: giving the energy density of the magnetic field: Inductance Practice (Homework) Ex Solenoid and coil ( 30-1) Ex Direction of emf in a solenoid ( 30-2) Ex Solenoid inductance ( 30-2) Energy stored in a solenoid ( 30-3) Energy density in a solenoid s magnetic field ( 30-3) Ex Coaxial cable Inductance ( 30-2) Ex Energy stored in a coaxial cable ( 30-3) 30-4 LR Circuits When the switch closes, the inductor keeps the current from attaining its maximum value immediately. That is when the current is changing most rapidly, and when the potential drop across the conductor is at a maximum. 5

6 30-4 LR Circuits Current as a function of time: 30-5 Oscillations in LC Circuits and Electromagnetic Oscillations Start with charged capacitor It will discharge through inductor, and then recharge in opposite sense If no resistance, will continue indefinitely 30-5 Oscillations in LC Circuits and Electromagnetic Oscillations Charge on capacitor oscillates with frequency ω: Charge as a function of time: Here, Q 0 is the original charge and φ sets the phase at t = 0. 6

7 30-6 LC Oscillations with Resistance (LRC Circuits) 30-6 LC Oscillations with Resistance (LRC Circuits) Charge equation: Solution: where and 30-6 LC Oscillations with Resistance (LRC Circuits) For a certain value of R, ω = 0. This is called critical damping. 7

8 30-6 LC Oscillations with Resistance (LRC Circuits) In a pure LC circuit, energy is transferred back and forth between the capacitor s electric field and the inductor s magnetic field. Including a resistor causes I 2 R losses, which show up as heat. Homework: Inductance Practice Ex Solenoid and coil ( 30-1) Ex Direction of emf in a solenoid ( 30-2) Ex Solenoid inductance ( 30-2) Energy stored in a solenoid ( 30-3) Energy density in a solenoid s magnetic field ( 30-3) Ex Coaxial cable Inductance ( 30-2) Ex Energy stored in a coaxial cable ( 30-3) Homework: Derivations for Inductance Circuits LR Circuit ( 30-4) LC Circuit ( 30-5) LRC Circuit ( 30-6) 8

9 Summary of Chapter 30 Definition of inductance: Induced emf: emf induced in a second loop: Energy in an inductor: Energy density of a magnetic field: Summary of Chapter 30, cont. LC circuit oscillations: LRC circuit oscillations: 9

10 10

11 Important Derivatives: 11

12 12

13 13

14 14

15 15

16 16

17 Modification of Kirchhoff s loop rule: In moving across an inductor of inductance L along (or against) the presumed direction of the current I, the potential change is ΔV = L di/dt (or +L di/dt, respectively). -el fin aside- 17

### Chapter 32. Inductance

Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

### Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

### Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Chapter 30. Inductance

Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced

### Handout 10: Inductance. Self-Inductance and inductors

1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

### Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

### Chapter 32. Inductance

Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

### Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

### Active Figure 32.3 (SLIDESHOW MODE ONLY)

RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

### Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Chapter 30 Inductance

Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

### ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

### Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.

### The self-inductance depends on the geometric shape of the coil. An inductor is a coil of wire used in a circuit to provide inductance is an inductor.

Self Inductance and Mutual Inductance Script Self-Inductance Consider a coil carrying a current i. The current in the coil produces a magnetic field B that varies from point to point in the coil. The magnetic

### Lecture 22. Inductance. Magnetic Field Energy.

Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

### Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

### Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 30 Inductance PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 30 Looking forward at how a time-varying

### Lecture 35. PHYC 161 Fall 2016

Lecture 35 PHYC 161 Fall 2016 Induced electric fields A long, thin solenoid is encircled by a circular conducting loop. Electric field in the loop is what must drive the current. When the solenoid current

### Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

### Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

### INDUCTANCE Self Inductance

NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

### Lecture 22. Inductance. Magnetic Field Energy.

Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

### Chapter 31. Faraday s Law

Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

### Chapter 31. Faraday s Law

Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

### Lecture 13.2 :! Inductors

Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.6-33.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!

### ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

### PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

### Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.

Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the

### Sliding Conducting Bar

Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

### Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

### AP Physics C. Magnetism - Term 4

AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

### PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

### AP Physics C. Inductance. Free Response Problems

AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

### Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

### Louisiana State University Physics 2102, Exam 3, November 11, 2010.

Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and

### Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

### /20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

### University of Colorado at Boulder Summer 2017, Session B Tuesday, July 11 - Friday, August 11. Prof. Mik Sawicki PHYS 1120 COURSE CALENDAR WEEK 1

University of Colorado at Boulder Summer 2017, Session B Tuesday, July 11 - Friday, August 11 1 T 07/11 Introduction and Electric charge 2 W 07/12 Coulomb s Law and Unit1 Electric Field. Unit 2 3 TH 07/13

### Inductors Maxwell s equations

Lecture 19 Chapter 34 Physics II Inductors Maxwell s equations Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Inductors Inductors (solenoids) store potential energy in a form

### AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

### Lecture 39. PHYC 161 Fall 2016

Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

### 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

### Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

### Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

### Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

### Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

### Chapter 14 Inductance 627

Chapter 14 Inductance 627 14 INDUCTANCE Figure 14.1 A smartphone charging mat contains a coil that receives alternating current, or current that is constantly increasing and decreasing. The varying current

### Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called

### Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

### Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

### Exam 2 Fall 2014

1 95.144 Exam 2 Fall 2014 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

### Induced e.m.f. on solenoid itself

Induced e.m.f. Consider a loop of wire with radius r inside a long enoid Solenoid: N# of loops, ltotal length nn/l I I (t) What is the e.m.f. generated in the loop? Find inside enoid: E.m.f. generated

### cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

### PHYS 241 EXAM #2 November 9, 2006

1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

### Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance Lana Sheridan De Anza College Mar 14, 2018 Last time inductors resistor-inductor circuits Overview wrap up resistor-inductor circuits

### Alternating Current Circuits. Home Work Solutions

Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

### AP Physics C. Electricity - Term 3

AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

### Induction and Inductance

Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only

### Yell if you have any questions

Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

### Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

Inductance 1 Definition of Inductance When electric potentials are placed on a system of conductors, charges move to cancel the electric field parallel to the conducting surfaces of the conductors. We

### Electromagnetic Induction & Inductors

Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field

### ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) The Electric and magnetic fields are inter-related

EMF Handout 9: Electromagnetic Induction ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 3; Ohanian Chapter 3) This handout coers: Motional emf and the electric generator Electromagnetic Induction and Faraday

### K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

### CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

### Electromagnetic Induction and Waves (Chapters 33-34)

Electromagnetic nduction and Waves (Chapters 33-34) The laws of emf induction: Faraday s and Lenz s laws Concepts of classical electromagnetism. Maxwell equations nductance Mutual inductance M Self inductance

### PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

### PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

### PES 1120 Spring 2014, Spendier Lecture 35/Page 1

PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3 - LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We

### Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

### Lecture 27: FRI 20 MAR

Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect

### Inductance. Chapter Outline Self-Inductance 32.2 RL Circuits 32.3 Energy in a Magnetic Field

P U Z Z L E R The marks in the pavement are part of a sensor that controls the traffic lights at this intersection. What are these marks, and how do they detect when a car is waiting at the light? ( David

### 9-3 Inductance. * We likewise can have self inductance, were a timevarying current in a circuit induces an emf voltage within that same circuit!

/3/004 section 9_3 Inductance / 9-3 Inductance Reading Assignment: pp. 90-86 * A transformer is an example of mutual inductance, where a time-varying current in one circuit (i.e., the primary) induces

### Chapter 30. Induction and Inductance

Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears

### Physics for Scientists and Engineers 4th Edition 2017

A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

### Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance 1. What is Faraday s Law? Magnitude of voltage induced in a turn of wire is proportional to the rate of change of flux passing through that

Preparation Assignments for Homework #5 Due at the start of class. These assignments will only be accepted from students attending class. Reading Assignments Please see the handouts for each lesson for

### Last time. Ampere's Law Faraday s law

Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

### 10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017 CATALOG INFORMATION Dept and Nbr: PHYS 42 Title: ELECTRICITY & MAGNETISM Full Title: Electricity and Magnetism for Scientists

### Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.)

Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.) ξ 2 = MdI 1 /dt : A changing current in a coil of wire (1) will induce an EMF in a second coil (2) placed nearby.

### Module 22 and 23: Section 11.1 through Section 11.4 Module 24: Section 11.4 through Section Table of Contents

Module and 3: Section 11.1 through Section 11.4 Module 4: Section 11.4 through Section 11.13 1 Table of Contents Inductance and Magnetic Energy... 11-3 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual

### Principles of Physics II

Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

### Induction and inductance

PH -C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following

### Chapter 30 Self Inductance, Inductors & DC Circuits Revisited

Chapter 30 Self Inductance, Inductors & DC Circuits Revisited Self-Inductance and Inductors Self inductance determines the magnetic flux in a circuit due to the circuit s own current. B = LI Every circuit

### COURSE OUTLINE. Upon completion of this course the student will be able to:

1 School of Arts & Science PHYSICS DEPARTMENT PHYS 210-01/02 2016Q1 COURSE OUTLINE Instructor Information (a) Instructor: Dr. Julie Alexander (b) Office Hours: M:9:30, T:10:30, Th:2:30, F:11:30 (c) Location:

### Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

### PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

### General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

### Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

### Describe the forces and torques exerted on an electric dipole in a field.

Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

### MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 Question 1 (a) List three sources of heat in soldering (b) state the functions of flux in soldering (c) briefly describe with aid of diagram

### 11 Chapter. Inductance and Magnetic Energy

11 Chapter Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Co-planar Loops... 11-5 11.2 Self-Inductance... 11-6 Example 11.2 Self-Inductance

### Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

### we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

### Waves. Decibels. Chapter 21: Dimension

Chapter 20: 20.1 The Wave Model 20.2 One Dimensional 20.3 Sinusoidal 20.4 Sound Light 20.5 Index of Refraction 20.6 Power, Intensity, Decibels 20.7 The Doppler Effect Chapter 21: 21.1 The Principle of

### PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

### Version 001 CIRCUITS holland (1290) 1

Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

### Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 34-35 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators

### Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills