# PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Size: px
Start display at page:

Download "PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT"

Transcription

1 PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT

2 Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is and how it is used. Slide 30-2

3 Chapter 30 Preview Slide 30-3

4 Chapter 30 Preview Slide 30-4

5 Chapter 30 Preview Slide 30-5

6 Chapter 30 Preview Slide 30-6

7 Chapter 30 Preview Slide 30-7

8 Chapter 30 Preview Slide 30-8

9 Chapter 30 Content, Examples, and QuickCheck Questions Slide 30-9

10 Faraday s Discovery of 1831 When one coil is placed directly above another, there is no current in the lower circuit while the switch is in the closed position. A momentary current appears whenever the switch is opened or closed. Slide 30-10

11 Faraday s Discovery of 1831 When a bar magnet is pushed into a coil of wire, it causes a momentary deflection of the current-meter needle. Holding the magnet inside the coil has no effect. A quick withdrawal of the magnet deflects the needle in the other direction. Slide 30-11

12 Faraday s Discovery of 1831 A momentary current is produced by rapidly pulling a coil of wire out of a magnetic field. Pushing the coil into the magnet causes the needle to deflect in the opposite direction. Slide 30-12

13 Motional emf Slide 30-13

14 Motional emf Slide 30-14

15 Motional emf Slide 30-15

16 Motional emf The magnetic force on the charge carriers in a moving conductor creates an electric field of strength E = vb inside the conductor. For a conductor of length l, the motional emf perpendicular to the magnetic field is: Slide 30-16

17 Example 30.1 Measuring the Earth s Magnetic Field Slide 30-17

18 Example 30.1 Measuring the Earth s Magnetic Field Slide 30-18

19 Induced Current If we slide a conducting wire along a U-shaped conducting rail, we can complete a circuit and drive an electric current. If the total resistance of the circuit is R, the induced current is given by Ohm s law as Slide 30-19

20 Induced Current To keep the wire moving at a constant speed v, we must apply a pulling force F pull = vl 2 B 2 /R. This pulling force does work at a rate All of this power is dissipated by the resistance of the circuit. Slide 30-20

21 Induced Current The figure shows a conducting wire sliding to the left. In this case, a pushing force is needed to keep the wire moving at constant speed. Once again, this input power is dissipated in the electric circuit. A device that converts mechanical energy to electric energy is called a generator. Slide 30-21

22 Eddy Currents Consider pulling a sheet of metal through a magnetic field. Two whirlpools of current begin to circulate in the solid metal, called eddy currents. The magnetic force on the eddy currents is a retarding force. This is a form of magnetic braking. Slide 30-22

23 The Basic Definition of Flux Imagine holding a rectangular wire loop of area A = ab in front of a fan. The volume of air flowing through the loop each second depends on the angle between the loop and the direction of flow. No air goes through the same loop if it lies parallel to the flow. The flow is maximum through a loop that is perpendicular to the airflow. This occurs because the effective area is greatest at this angle. The effective area (as seen facing the fan) is Slide 30-23

24 The Basic Definition of Flux Slide 30-24

25 Magnetic Flux Through a Loop Slide 30-25

26 The Area Vector Let s define an area vector to be a vector in the direction of, perpendicular to the surface, with a magnitude A equal to the area of the surface. Vector has units of m 2. Slide 30-26

27 Magnetic Flux The magnetic flux measures the amount of magnetic field passing through a loop of area A if the loop is tilted at an angle θ from the field. The SI unit of magnetic flux is the weber: 1 weber = 1 Wb = 1 T m 2 Slide 30-27

28 Example 30.4 A Circular Loop in a Magnetic Field Slide 30-28

29 Example 30.4 A Circular Loop in a Magnetic Field Slide 30-29

30 Magnetic Flux in a Nonuniform Field The figure shows a loop in a nonuniform magnetic field. The total magnetic flux through the loop is found with an area integral: Slide 30-30

31 Lenz s Law Slide 30-31

32 Lenz s Law Pushing the bar magnet into the loop causes the magnetic flux to increase in the downward direction. To oppose the change in flux, which is what Lenz s law requires, the loop itself needs to generate an upward-pointing magnetic field. The induced current ceases as soon as the magnet stops moving. Slide 30-32

33 Lenz s Law Pushing the bar magnet away from the loop causes the magnetic flux to decrease in the downward direction. To oppose this decrease, a clockwise current is induced. Slide 30-33

34 The Induced Current for Six Different Situations: Slide 1 Slide 30-34

35 The Induced Current for Six Different Situations: Slide 2 Slide 30-35

36 The Induced Current for Six Different Situations: Slide 3 Slide 30-36

37 The Induced Current for Six Different Situations: Slide 4 Slide 30-37

38 The Induced Current for Six Different Situations: Slide 5 Slide 30-38

39 The Induced Current for Six Different Situations: Slide 6 Slide 30-39

40 Tactics: Using Lenz s Law Slide 30-40

41 Faraday s Law An emf is induced in a conducting loop if the magnetic flux through the loop changes. The magnitude of the emf is The direction of the emf is such as to drive an induced current in the direction given by Lenz s law. Slide 30-41

42 Using Faraday s Law If we slide a conducting wire along a U-shaped conducting rail, we can complete a circuit and drive an electric current. We can find the induced emf and current by using Faraday s law and Ohm s law: Slide 30-42

43 Problem-Solving Strategy: Electromagnetic Induction Slide 30-43

44 Induced Fields The figure shows a conducting loop in an increasing magnetic field. According to Lenz s law, there is an induced current in the counterclockwise direction. Something has to act on the charge carriers to make them move, so we infer that there must be an induced electric field tangent to the loop at all points. Slide 30-44

45 The Induced Electric Field When the magnetic field is increasing in a region of space, we may define a closed loop which is perpendicular to the magnetic field. Faraday s Law specifies the loop integral of the induced electric field around this loop: Slide 30-45

46 Induced Electric Field in a Solenoid Slide 1 of 3 The current through the solenoid creates an upward pointing magnetic field. As the current is increasing, B is increasing, so it must induce an electric field. Slide 30-46

47 Induced Electric Field in a Solenoid Slide 2 of 3 We could use Lenz s law to determine that if there were a conducting loop in the solenoid, the induced current would be clockwise. The induced electric field must therefore be clockwise around the magnetic field lines. Slide 30-47

48 Induced Electric Field in a Solenoid Slide 3 of 3 To use Faraday s law, integrate around a clockwise circle of radius r: Thus the strength of the induced electric field inside the solenoid is Slide 30-48

49 Example An Induced Electric Field Slide 30-49

50 Example An Induced Electric Field Slide 30-50

51 Example An Induced Electric Field Slide 30-51

52 Example An Induced Electric Field Slide 30-52

53 The Induced Electric Field Faraday s law and Lenz s law may be combined by noting that the emf must oppose the change in Φ m. Mathematically, emf must have the opposite sign of db/dt. Faraday s law may be written as Slide 30-53

54 The Induced Magnetic Field As we know, changing the magnetic field induces a circular electric field. Symmetrically, changing the electric field induces a circular magnetic field. The induced magnetic field was first suggested as a possibility by James Clerk Maxwell in Slide 30-54

55 Maxwell s Theory of Electromagnetic Waves A changing electric field creates a magnetic field, which then changes in just the right way to recreate the electric field, which then changes in just the right way to again re-create the magnetic field, and so on. This is an electromagnetic wave. Slide 30-55

56 Generators A generator is a device that transforms mechanical energy into electric energy. A generator inside a hydroelectric dam uses electromagnetic induction to convert the mechanical energy of a spinning turbine into electric energy. Slide 30-56

57 An Alternating-Current Generator Slide 30-57

58 Example An AC Generator Slide 30-58

59 Example An AC Generator Slide 30-59

60 Transformers A transformer sends an alternating emf V 1 through the primary coil. This causes an oscillating magnetic flux through the secondary coil and, hence, an induced emf V 2. The induced emf of the secondary coil is delivered to the load: Slide 30-60

61 Transformers A step-up transformer, with N 2 >> N 1, can boost the voltage of a generator up to several hundred thousand volts. Delivering power with smaller currents at higher voltages reduces losses due to the resistance of the wires. High-voltage transmission lines carry electric power to urban areas, where step-down transformers (N 2 << N 1 ) lower the voltage to 120 V. Slide 30-61

62 Metal Detectors A metal detector consists of two coils: a transmitter coil and a receiver coil. A high-frequency AC current in the transmitter coil causes a field which induces current in the receiver coil. The net field at the receiver decreases when a piece of metal is inserted between the coils. Electronic circuits detect the current decrease in the receiver coil and set off an alarm. Slide 30-62

63 Inductors A coil of wire, or solenoid, can be used in a circuit to store energy in the magnetic field. We define the inductance of a solenoid having N turns, length l and cross-section area A as The SI unit of inductance is the henry, defined as 1 henry = 1 H = 1 Wb/A = 1 T m2/a A coil of wire used in a circuit for the purpose of inductance is called an inductor. The circuit symbol for an ideal inductor is. Slide 30-63

64 Example The Length of an Inductor Slide 30-64

65 Example The Length of an Inductor Slide 30-65

66 Potential Difference Across an Inductor The figure above shows a steady current into the left side of an inductor. The solenoid s magnetic field passes through the coils, establishing a flux. The next slide shows what happens if the current increases. Slide 30-66

67 Potential Difference Across an Inductor In the figure, the current into the solenoid is increasing. This creates an increasing flux to the left. Therefore the induced magnetic field must point to the right. The induced emf ΔV L must be opposite to the current into the solenoid: Slide 30-67

68 Potential Difference Across an Inductor In the figure, the current into the solenoid is decreasing. To oppose the decrease in flux, the induced emf ΔV L is in the same direction as the input current. The potential difference across an inductor, measured along the direction of the current, is Slide 30-68

69 Potential Difference Across an Inductor Slide 30-69

70 Example Large Voltage Across an Inductor Slide 30-70

71 Example Large Voltage Across an Inductor Slide 30-71

72 Energy in Inductors and Magnetic Fields As current passes through an inductor, the electric power is P elec is negative because the current is losing energy. That energy is being transferred to the inductor, which is storing energy U L at the rate We can find the total energy stored in an inductor by integrating: Slide 30-72

73 Energy in Inductors and Magnetic Fields Inside a solenoid, the magnetic field strength is B = μ 0 NI/l. The inductor s energy can be related to B: But Al is the volume inside the solenoid. Dividing by Al, the magnetic field energy density (energy per m 3 ) is Slide 30-73

74 Energy in Electric and Magnetic Fields Slide 30-74

75 Example Energy Stored in an Inductor Slide 30-75

76 Example Energy Stored in an Inductor Slide 30-76

77 LC Circuits The figure shows a capacitor with initial charge Q 0, an inductor, and a switch. The switch has been open for a long time, so there is no current in the circuit. At t = 0, the switch is closed. How does the circuit respond? The charge and current oscillate in a way that is analogous to a mass on a spring. Slide 30-77

78 LC Circuits: Step A Slide 30-78

79 LC Circuits: Step B Slide 30-79

80 LC Circuits: Step C Slide 30-80

81 LC Circuits: Step D Slide 30-81

82 LC Circuits An LC circuit is an electric oscillator. The letters on the graph correspond to the four steps in the previous slides. The charge on the upper plate is Q = Q 0 cosωt and the current through the inductor is I = I max sinωt, where Slide 30-82

83 LC Circuits A cell phone is actually a very sophisticated two-way radio that communicates with the nearest base station via highfrequency radio waves roughly 1000 MHz. As in any radio or communications device, the transmission frequency is established by the oscillating current in an LC circuit. Slide 30-83

84 Example An AM Radio Oscillator Slide 30-84

85 LR Circuits The figure shows an inductor and resistor in series. Initially there is a steady current I 0 being driven through the LR circuit by an external battery. At t = 0, the switch is closed. How does the circuit respond? The current through the circuit decays exponentially, with a time constant τ = L/R. Slide 30-85

86 LR Circuits Slide 30-86

87 Chapter 30 Summary Slides Slide 30-87

88 General Principles Slide 30-88

89 General Principles Slide 30-89

90 General Principles Slide 30-90

91 Important Concepts Slide 30-91

92 Important Concepts Slide 30-92

93 Important Concepts Slide 30-93

94 Applications Slide 30-94

95 Applications Slide 30-95

### Agenda for Today. Elements of Physics II. Forces on currents

Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

### Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Clicker Question 11: A rectangular

### Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Electromagnetic induction We saw that a magnetic field could be produced with an

### Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Atomic Magnets A plausible explanation

### Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Electromagnetic

### Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.

### General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

### ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

### Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

### Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

### Induction and Inductance

Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only

### PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

### PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

### Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

### Chapter 30. Induction and Inductance

Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears

### Chapter 30. Induction and Inductance

Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears

### Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

### Physics 132: Lecture 15 Elements of Physics II Agenda for Today

Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:

### K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

### Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

### PHY 1214 General Physics II

PHY 1214 General Physics II Lecture 19 Induced EMF and Motional EMF July 5-6, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We

### LECTURE 17. Reminder Magnetic Flux

LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

### Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

### AP Physics C - E & M

AP Physics C - E & M Electromagnetic Induction 2017-07-14 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law

### Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

### Chapter 5. Electromagnetic Induction

Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field

### Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

### Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

### Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

### Sliding Conducting Bar

Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

### AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

### COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

### Calculus Relationships in AP Physics C: Electricity and Magnetism

C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

### ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

### Electromagnetic Induction

Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

### Chapter 12. Magnetism and Electromagnetism

Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

### Induction_P1. 1. [1 mark]

Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

### Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

### Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

### Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

### Lecture 33. PHYC 161 Fall 2016

Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/

### Induced Electric Field

Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications

### Lecture 13.2 :! Inductors

Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.6-33.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!

### Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 34-35 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators

### AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

AP Physics C Unit 11: Electromagnetic Induction Part 1 - Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in

### Electromagnetic Induction

Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional

### Lecture 30: WED 04 NOV

Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,

### Chapter 30. Inductance

Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced

### Can a Magnetic Field Produce a Current?

Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse

### Physics 115. Induction Induced currents. General Physics II. Session 30

Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics

### Electricity & Magnetism

Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B

### (a) zero. B 2 l 2. (c) (b)

1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

### Inductors Maxwell s equations

Lecture 19 Chapter 34 Physics II Inductors Maxwell s equations Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Inductors Inductors (solenoids) store potential energy in a form

### Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Last Name: First Name: Physics 102 Spring 2007: Final Exam Multiple-Choice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit

### Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit.

A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity &

### Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external E-field» E-field generated by Σq i Magnetostatics» motion of q and i in external -field» -field generated by I Electrodynamics»

### Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

### Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

### Induction and Inductance

Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

### A Generator! Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 22

A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. To keep the wire moving you must supply a force to overcome the

### P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

### Induction and inductance

PH -C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following

### Physics for Scientists and Engineers 4th Edition 2017

A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

### Chapter 21 Lecture Notes

Chapter 21 Lecture Notes Physics 2424 - Strauss Formulas: Φ = BA cosφ E = -N Φ/ t Faraday s Law E = Bvl E = NABω sinωt M = (N 2 Φ 2 )/I 1 E 2 = -M I 1 / t L = NΦ/I E = -L I/ t L = µ 0 n 2 A l Energy =

### DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

### AP Physics C. Magnetism - Term 4

AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

### Faraday s Law of Electromagnetic Induction

Faraday s Law of Electromagnetic Induction 2.1 Represent and reason The rectangular loop with a resistor is pulled at constant velocity through a uniform external magnetic field that points into the paper

### AP Physics 2 Electromagnetic Induction Multiple Choice

Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

### Handout 10: Inductance. Self-Inductance and inductors

1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

### 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

### Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

### PHYS 1442 Section 004 Lecture #14

PHYS 144 Section 004 Lecture #14 Wednesday March 5, 014 Dr. Chapter 1 Induced emf Faraday s Law Lenz Law Generator 3/5/014 1 Announcements After class pickup test if you didn t Spring break Mar 10-14 HW7

### ElectroMagnetic Induction

ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first

### Electromagnetism IB 12

Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the

### Agenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop

Lenz Law Physics 132: Lecture e 22 Elements of Physics II Agenda for Today Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 201: Lecture 1, Pg 1 Lenz s Law Physics 201:

### Last time. Ampere's Law Faraday s law

Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

### PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

### Chapter 10 Notes: Magnetic Induction

Chapter 10 Notes: Magnetic Induction How can a changing magnetic field cause an electric current to flow? Eleven years after the connection between magnetism and electricity was first reported by Oersted,

### Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

### Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction In this chapter we investigate how changing the magnetic flux in a circuit induces an emf and a current. We learned in Chapter 25 that an electromotive force (E) is

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

### Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

### Induced Electric Field

Lecture 20 Chapter 30 Induced Electric Field This fool said some nonsense that the electric field can be produced from the magnetic field. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii

### Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

### ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

### Induced Electric Field

Lecture 18 Chapter 30 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7

### Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

### Chapter 30 Inductance and Electromagnetic Oscillations

Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 Self-Inductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,

### Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

### Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

### Chapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 30 Inductance PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 30 Looking forward at how a time-varying

### a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field

### ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

### Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

### AP Physics C. Electricity - Term 3

AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

### Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

### PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with