Chapter 23 Magnetic Flux and Faraday s Law of Induction


 Ariel Marshall
 6 years ago
 Views:
Transcription
1 Chapter 23 Magnetic Flux and Faraday s Law of Induction 1
2 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators and Motors Inductance RL Circuits Energy Stored in a Magnetic Field Transformers 2
3 231 Induced Electromotive Force Faraday s experiment: closing the switch in the primary circuit induces a current in the secondary circuit, but only while the current in the primary circuit is changing. 3
4 231 Induced Electromotive Force 4 Current in the secondary circuit is 0 if current in the primary circuit is not changing.! Current flows in the secondary circuit when current in the primary is changing.! Flows in opposite direction depending on whether the magnetic field is increasing or decreasing.! Magnitude of induced current proportional to rate at which the magnetic field is changing.
5 231 Induced Electromotive Force Note the motion of the magnet in each image 5
6 232 Magnetic Flux Magnetic flux is used in the calculation of the induced emf. 6
7 233 Faraday s Law of Induction Faraday s law: An emf is induced only when the magnetic flux through a loop changes with time. 7
8 233 Faraday s Law of Induction Many devices that operate on the basis of Faraday s law. An electric guitar pickup: 8
9 234 Lenz s Law Lenz s Law Induced current always flows in a direction that opposes the change that caused it. If magnetic field is increasing (or decreasing), the magnetic field created by the induced current will be the opposite direction 9
10 234 Lenz s Law This conducting rod completes the circuit.! As it falls, the magnetic flux decreases, and a current is induced. 10
11 234 Lenz s Law The force due to the induced current is upward, slowing the fall. 11
12 234 Lenz s Law Currents can also flow in bulk conductors. These induced currents, called eddy currents, can be powerful brakes. 12
13 235 Mechanical Work and Electrical Energy This diagram shows the variables we need to calculate the induced emf. 13
14 235 Mechanical Work and Electrical Energy Change in flux: Induced emf: Electric field caused by the motion of the rod: 14
15 235 Mechanical Work and Electrical Energy If the rod is to move at a constant speed, an external force must be exerted on it.! This force should have equal magnitude and opposite direction to the magnetic force: 15
16 235 Mechanical Work and Electrical Energy Mechanical power delivered by the external force is: Compare this to the electrical power in the light bulb: Therefore, mechanical power has been converted directly into electrical power. 16
17 236 Generators and Motors An electric generator converts mechanical energy into electric energy: An outside source of energy is used to turn the coil, thereby generating electricity. 17
18 236 Generators and Motors The induced emf in a rotating coil varies sinusoidally: 18
19 236 Generators and Motors An electric motor is exactly the opposite of a generator it uses the torque on a current loop to create mechanical energy. 19
20 237 Inductance When the switch is closed in this circuit, a current is established that increases with time. 20
21 237 Inductance Inductance is the proportionality constant that tells us how much emf will be induced for a given rate of change in current: Solving for L, 21
22 237 Inductance Given the definition of inductance, the inductance of a solenoid can be calculated: When used in a circuit, such a solenoid (or other coil) is called an inductor. 22
23 238 RL Circuits Switch is closed, the current immediately starts to increase. Back emf in the inductor is large, as the current is changing rapidly. As time goes on, the current increases more slowly, and the potential difference across the inductor decreases. 23
24 238 RL Circuits This shows the current in an RL circuit as a function of time. The time constant is: 24
25 239 Energy Stored in a Magnetic Field It takes energy to establish a current in an inductor; this energy is stored in the inductor s magnetic field.! Considering the emf needed to establish a particular current, and the power involved, we find: 25
26 239 Energy Stored in a Magnetic Field We know the inductance of a solenoid; therefore, the magnetic energy stored in a solenoid is: Dividing by the volume to find the energy density gives: Result is valid for any magnetic field, regardless of source. 26
27 2310 Transformers A transformer is used to change voltage in an alternating current from one value to another. 27
28 2310 Transformers By applying Faraday s law of induction to both coils, we find: Here, p stands for the primary coil and s the secondary. 28
29 2310 Transformers The power in both circuits must be the same; therefore, if the voltage is lower, the current must be higher. 29
30 30 Answer: 1.6 x 104 Wb
31 31 Answer: 1.9 Wb
32 32 Answer: 14 V
33 33 Answer: 3.8 x 10 3
34 34 Answer: mt
35 L = µh Answer: 15.5 mv 35
36 Answer: a) 9.95 x 10 8 J/m 3 Answer: b) 1.5 x V/m 36
Chapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationCOLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES
COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,
More informationGeneral Physics II. Electromagnetic Induction and Electromagnetic Waves
General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationInduction and Inductance
Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only
More informationElectromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance
Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic
More informationPHYS 202 Notes, Week 6
PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/
More informationAssessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)
NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationMagnetism. and its applications
Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3  Magnetic force, either attractive or repelling varies
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationELECTROMAGNETIC INDUCTION AND FARADAY S LAW
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic
More informationLECTURE 17. Reminder Magnetic Flux
LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic
More informationPHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationChapter 21 Lecture Notes
Chapter 21 Lecture Notes Physics 2424  Strauss Formulas: Φ = BA cosφ E = N Φ/ t Faraday s Law E = Bvl E = NABω sinωt M = (N 2 Φ 2 )/I 1 E 2 = M I 1 / t L = NΦ/I E = L I/ t L = µ 0 n 2 A l Energy =
More informationPhysics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION
1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called
More informationElectromagnetic Induction and Faraday s Law
Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More informationPHYSICS  GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it  Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationiclicker: which statements are correct?
iclicker: which statements are correct? 1. Electric field lines must originate and terminate on charges 2. Magnetic field lines are always closed A: 1&2 B: only 1 C: only 2 D: neither 2 Inductive Efield:
More informationChapter 30 Inductance and Electromagnetic Oscillations
Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 SelfInductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,
More informationChapter 5. Electromagnetic Induction
Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field
More informationLECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich
LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following
More informationPHYS Fields and Waves
PHYS 2421  Fields and Waves Idea: We have seen: currents can produce fields We will now see: fields can produce currents Facts: Current is produced in closed loops when the magnetic flux changes Notice:
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationChapter 30. Inductance
Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationPhysics / Higher Physics 1A. Electricity and Magnetism Revision
Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector
More informationInductance, RL and RLC Circuits
Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic
More informationPHYS 1442 Section 004 Lecture #14
PHYS 144 Section 004 Lecture #14 Wednesday March 5, 014 Dr. Chapter 1 Induced emf Faraday s Law Lenz Law Generator 3/5/014 1 Announcements After class pickup test if you didn t Spring break Mar 1014 HW7
More informationAgenda for Today. Elements of Physics II. Forces on currents
Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationElectromagnetic Induction
Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current
More informationPhysics 106, Section 1
Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays
More informationChapter 23: Magnetic Flux and Faraday s Law of Induction
Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the
More informationElectromagnetic Induction
Chapter II Electromagnetic Induction Day 1 Induced EMF, Faraday s Law and Lenz s Law Sections 211 to 212 Electromotive Force Electromotive force (EMF ore) is a misnomer, as it is not really a force but
More informationLecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field
Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the Bfield.
More informationChapter 32. Inductance
Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered selfinductance Unit of
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Heinrich Friedrich Emil Lenz 12 February 1804 10 February 1865 Announcements Assignments for Thursday, November 8th:  Reading: Chapter 33.1  Watch
More informationActive Figure 32.3 (SLIDESHOW MODE ONLY)
RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor
More informationElectromagnetic Induction. Bo Zhou Faculty of Science, Hokudai
Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,
More informationPulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit.
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity &
More informationA Generator! Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 22
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. To keep the wire moving you must supply a force to overcome the
More informationPHY 1214 General Physics II
PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 67, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 46)
More informationElectromagnetic Induction
Faraday s Discovery Faraday found that there is a current in a coil of wire if and only if the magnetic field passing through the coil is changing. This is an informal statement of Faraday s law. Electromagnetic
More informationCURRENTCARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS
PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENTCARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in
More informationSelfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current.
Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit element called an
More information13. Faraday s Law. S. G. Rajeev. March 3, 2009
13. Faraday s Law S. G. Rajeev March 3, 009 1 Electromotive Force If a coil moves (or rotates) near a magnet, a current in induced on it, even if it is not connected to a battery. That means an electric
More informationElectricity & Magnetism
Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationSlide 1 / 50. Electromagnetic Induction and Faraday s Law
Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Electromagnetic Induction and Faraday s Law Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationSlide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law.
Electromagnetic Induction and Faraday s Law Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationDemo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor
Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done
More informationPhysics 115. Induction Induced currents. General Physics II. Session 30
Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics
More informationInduced e.m.f. on solenoid itself
Induced e.m.f. Consider a loop of wire with radius r inside a long enoid Solenoid: N# of loops, ltotal length nn/l I I (t) What is the e.m.f. generated in the loop? Find inside enoid: E.m.f. generated
More informationFaraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents
Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!
More informationK204: FARADAY'S EXPERIMENT  EME K243: LENZ'S LAW  PERMANENT MAGNET AND COILS
K204: FARADAY'S EXPERIMENT  EME SET  20, 40, 80 TURN COILS K262: CAN SMASHER  ELECTROMAGNETIC K243: LENZ'S LAW  PERMANENT MAGNET AND COILS K244: EDDY CURRENT PENDULUM K406: MAGNETOELECTRIC GENERATOR
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area
More informationVIKASANA 2014 ELECTROMAGNETIC INDUCTION
VIKASANA 2014 CET Training Classes ELECTROMAGNETIC INDUCTION 1. In Faraday s coil and magnet experiment, the galvanometer shows deflection: a. when the coil & the magnet are stationary b.
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More informationElectromagnetic Induction
lectromagnetic Induction Induced MF We already know that moving charge (=current) causes magnetic field It also works the other way around: changing magnetic field (e.g. moving permanent magnet) causes
More informationTactics: Evaluating line integrals
Tactics: Evaluating line integrals Ampère s law Whenever total current I through passes through an area bounded by a closed curve, the line integral of the magnetic field around the curve is given by Ampère
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationCh 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?
Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V
More informationInduction and inductance
PH C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following
More informationMagnetism is associated with charges in motion (currents):
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationChapter 5: Electromagnetic Induction
Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,
More informationPhysics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 301 Announcement Quiz 4 will be next week. The Final
More informationMagnetic Induction. VIII. Magnetic Induction. 1. Dynamo Rule. A. Dynamos & Generators. B. Faraday s Law. C. Inductance. A. Dynamos & Generators
Magnetic Induction VIII. Magnetic Induction A. Dynamos & Generators Dr. Bill Pezzaglia B. Faraday s Law C. Inductance Updated 03Aug5 Michael Faraday (79867) 3 A. Dynamos & Generators 4 8 Creates first
More informationCHAPTER 5: ELECTROMAGNETIC INDUCTION
CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field
More informationDetect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09
Detect Sensor (6B) Eddy Current Sensor Copyright (c) 2009 Young W. Lim. Permission is granteo copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
More informationElements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1
Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Clicker Question 11: A rectangular
More informationDO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION
DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic
More informationCollege Physics B  PHY2054C
Force on a Torque on a College  PHY2054C & 09/29/2014 My Office Hours: Tuesday 10:00 AM  Noon 206 Keen Building Outline Force on a Torque on a 1 Force on a Torque on a 2 3 4 Force on a Torque on a Force
More informationElectromagnetic Induction
Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward
More informationSlide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger
Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic
More informationRecap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J:
Class 13 : Induction Phenomenon of induction and Faraday s Law How does a generator and transformer work? Self and mutual inductance Energy stored in Bfield Recap (1) Maxwell s Equations describe the
More informationCHAPTER 7 ELECTRODYNAMICS
CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,
More informationElectromagnetism. Topics Covered in Chapter 14:
Chapter 14 Electromagnetism Topics Covered in Chapter 14: 141: Ampereturns of Magnetomotive Force (mmf) 142: Field Intensity (H) 143: BH Magnetization Curve 144: Magnetic Hysteresis 145: Magnetic
More informationMagnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves. Reading Journals for Tuesday from table(s)
PHYS 2015  Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS
More informationINDUCTANCE Self Inductance
NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing
More informationUnit 8: Electromagnetism
Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic
More informationElectromagnetic Induction (Chapters 3132)
Electromagnetic Induction (Chapters 313) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits
More informationAP Physics C Unit 11: Electromagnetic Induction. Part 1  Faraday s Law and Lenz s Law
AP Physics C Unit 11: Electromagnetic Induction Part 1  Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in
More informationFXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :
1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is
More informationHandout 10: Inductance. SelfInductance and inductors
1 Handout 10: Inductance SelfInductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This
More informationREVIEW SESSION. Midterm 2
REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationChapter 15 Magnetic Circuits and Transformers
Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the righthand rule to determine
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...
More informationPhysics 132: Lecture 15 Elements of Physics II Agenda for Today
Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:
More informationOctober 23. Physics 272. Fall Prof. Philip von Doetinchem
Physics 272 October 23 Fall 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_fall_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Fall 14  von Doetinchem  170 Motional electromotive
More informationElectrics. Electromagnetism
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More information