PHYSICS  GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.


 Silvester McCoy
 3 years ago
 Views:
Transcription
1 !!
2 CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it  Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common ways to INDUCE a voltage on a coil of wire:  Move a bar magnet  Vary current in electromagnet  Turn electromagnet on and off Induced voltage known as INDUCED EMF INDUCED CURRENT  Process known as ELECTROMAGNETIC INDUCTION EXAMPLE of current induction: vሬԧ vሬԧ = 0 vሬԧ CURRENT INDUCED NO CURRENT INDUCED CURRENT INDUCED CERTAIN changes will induce a current, and the magnitude of the current depends on the rate of these changes  ar magnet moving into coil Faster it goes, larger the induced current  Current changing in electromagnet near a coil Faster the current changes, larger the induced current Page 2
3 CONCEPT: MAGNETIC FLUX Remember! Electric flux is just the amount of passing through a surface  MAGNETIC FLUX is just the amount of passing through a surface MAGNETIC FLUX is given by A θ Normal Φ = (UNITS 1 Wb = 1 ) Magnetic flux changes with,, and  IMPORTANT to remember this changes in magnetic flux will be important later! EXAMPLE: What is the magnetic flux through the square surface depicted in the following figure, if = 0.05 T? Assume the side length of the square is 5 cm. Surface 30 o Page 3
4 PRACTICE: MAGNETIC FLUX THROUGH A RING A ring of radius 0.5m lies in the xyplane. If a magnetic field of magnitude 2 T points at an angle of 22 o above the xaxis, what is the magnetic flux through the ring? EXAMPLE: ROTATING RING A ring of radius 2 cm is in the presence of a 0.6 T magnetic field. If the ring begins with its plane parallel to the magnetic field, and ends with the plane of the ring perpendicular to the magnetic field, what is the change in the magnetic flux? Page 4
5 CONCEPT: MAGNETIC FLUX WITH CALCULUS Magnetic flux when the magnetic field DOESN T CHANGE over the surface Φ = Acosθ  For changing fields Φ = EXAMPLE: What is the flux through the loop shown in the following figure? i d w L Page 5
6 CONCEPT: FARADAY S LAW Changing magnetic field through conducting loops  This is actually due to a changing MAGNETIC FLUX A changing MAGNETIC FLUX leads to an induced EMF: Ɛ ind =  This is known as Faraday s Law Remember! Φ = A cos θ  So, magnetic flux changes with,, and EXAMPLE 1: A square conducting wire of side length 4 cm is in a 2 T magnetic field. It rotates such that the angle of the magnetic field to the normal of the square increases from 30 o to 60 o in 2 s. What is the induced current on the wire if its resistance is 5 Ω? Page 6
7 PRACTICE: FARADAY S LAW AND TWO SOLENOIDS Two solenoids are placed end to end, with one solenoid connected to a variable power source, and the other solenoid connected to a 10 Ω resistor. The first solenoid has 10 turns per cm and has as an initial current of 2 A, and the second solenoid has 5 turns and a radius of 2 cm. a) What is the change in magnetic field emitted by the first solenoid if the current increases from 2 A to 5 A in 1 s? b) What is the change in the magnetic flux through the other solenoid during this 1 s? c) What is the induced EMF on the second solenoid? d) What is the induced current on the second solenoid? EXAMPLE: CURRENT IN A CIRCUIT WITH A CHANGING, EXTERNAL MAGNETIC FIELD What current does the ammeter read if the following circuit, with an area of 50 cm 2, is placed in a magnetic field that is changing at 0.05 T/s? Note that the resistor has a resistance of 2 Ω. ሬሬԦ A Page 7
8 CONCEPT: FARADAY S LAW WITH CALCULUS FARADAY S LAW states, more precisely,  Ɛ = EXAMPLE: Find the current in the loop shown in the following figure if the current in the straight wire increases at di/dt. i d w L b Reminder! etween any two points, a and b, V ab = E dl a  For a coil which has an induced EMF, the integral has to be a CLOSED integral over the loop E dl = dφ dt Page 8
9 EXAMPLE: RAIL GUN A rail gun is composed of a moveable conducting rod on a Ushaped circuit, as shown below. What is the next force on the conducting rod in this case? Page 9
10 CONCEPT: LENZ S LAW Faraday s Law tells us the magnitude of the induced EMF magnitude of induced current  To find DIRECTION of induced current, we use Lenz s Law LENZ s LAW states: A conductor will induce a magnetic field on itself to changes in its magnetic flux v v ind v ind v Once the direction of the induced magnetic field is known, right hand rule gives direction of induced current v ind v i ind EXAMPLE: In the following scenarios, find the direction of the current induced on the conductors. v v v Page 10
11 PRACTICE: DIRECTION OF INDUCED CURRENT IN A RING What is the direction of the induced current in the inner ring shown in the following figure? For this problem, consider the battery s voltage as continuously INCREASING. Note: the arrow striking through the battery in the circuit diagram indicates that the voltage of the battery is variable (i.e. it can be changed). EXAMPLE: AR MAGNET VS CURRENTCARRYING WIRE A bar magnet moves relative to a coil of wire as indicated in the figure below and induces a current in the coil. A current carrying wire carries a current relative to a coil as shown in the second figure. Would you need to increase or decrease the magnitude of the current in the wire to induce a current in the coil that moves in the SAME direction as the current induced by the bar magnet? Scenario 1 v Scenario 2 i Page 11
12 CONCEPT: MOTIONAL EMF Remember! A changing magnetic field can produce an EMF  UT so can motion. This is referred to as a MOTIONAL EMF. If a conductor moves through a magnetic field, charges feel a Positive charges feel the force [ UPWARD / DOWNWARD] Separation of charges L FሬԦ ሬሬԦ vሬԧ Separation of charges E field Electric force that magnetic force  To balance, E = v Induced EMF Ɛ = EL = EXAMPLE: If a conductor of length 10 cm moves with a velocity of 20 m/s in a magnetic field of 0.05 T, what is the current through the conductor if its resistance is 15 Ω If a conductor moves along Ushaped wire, MAGNETIC FLUX changes  Change in Change in magnetic flux Production of L ሬሬԦ vሬԧ Change in area of Change in magnetic flux of Induced EMF Ɛ = ΔΦ Δt = EXAMPLE: In the circuit below, if the wire has a resistance of 10 Ω, what is the current induced if the length of the bar is 10 cm, the speed of the bar is 25 cm/s, and the magnetic field is 0.02 T? What about the power generated by the circuit? a ሬሬԦ vሬԧ b Page 12
13 PRACTICE: AR MOVING IN UNKNOWN MAGNETIC FIELD A thin rod moves in a perpendicular, unknown magnetic field. If the length of the rod is 10 cm and the induced EMF is 1 V when it moves at 5 m/s, what is the magnitude of the magnetic field? Page 13
14 CONCEPT: TRANSFORMERS Power in North America is delivered to outlets in homes at 120 V.  This is too large to operate many delicate electronics, such as computers. Remember! A coil with a changing magnetic field can induce an EMF on a second coil  This induced EMF can be as small as needed. A TRANSFORMER does exactly this it uses Faraday s law to convert a large voltage to a small EMF: V 1 V 2 The ratio of the VOLTAGES in a transformer depends upon the ratio of the TURNS: V 2 V 1 = N 2 N 1 EXAMPLE: You need to build a transformer that drops the 120 V of a regular North American outlet to a much safer 15 V. You already have a solenoid with 50 turns made, but you need to make a second solenoid to complete your transformer. What is the least number of turns the second solenoid could have? Page 14
15 PRACTICE: OPERATING A LAPTOP An outlet in North America outputs electricity at 120 V, but a typical laptop needs to operate at around 20 V. In order to do so, a transformer is placed in a laptop s power supply. If the coil in the circuit connected to the laptop has 20 turns, how many turns must the coil in the circuit with the outlet have? Page 15
General Physics II. Electromagnetic Induction and Electromagnetic Waves
General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field
More informationELECTROMAGNETIC INDUCTION AND FARADAY S LAW
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationFaraday s Law of Electromagnetic Induction
Faraday s Law of Electromagnetic Induction 2.1 Represent and reason The rectangular loop with a resistor is pulled at constant velocity through a uniform external magnetic field that points into the paper
More informationElectromagnetic Induction (Chapters 3132)
Electromagnetic Induction (Chapters 313) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationPHYSICS  CLUTCH CH 28: INDUCTION AND INDUCTANCE.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t  Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways
More informationPHYSICS  CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t  Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways
More informationLECTURE 17. Reminder Magnetic Flux
LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical
More informationPHYS Fields and Waves
PHYS 2421  Fields and Waves Idea: We have seen: currents can produce fields We will now see: fields can produce currents Facts: Current is produced in closed loops when the magnetic flux changes Notice:
More informationChapter 22. Induction
Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected
More informationCHAPTER 5: ELECTROMAGNETIC INDUCTION
CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field
More informationDemo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor
Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationPHY 1214 General Physics II
PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 67, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 46)
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More informationFaraday s Law. Lecture 17. Chapter 33. Physics II. Course website:
Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Electromagnetic
More informationChapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1
Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and
More informationFaraday s Law. Lecture 17. Chapter 33. Physics II. Course website:
Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Electromagnetic induction We saw that a magnetic field could be produced with an
More informationVersion 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1
Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This printout should have 35 questions. Multiplechoice questions may continue on the next column or page find all choices before answering.
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationC. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.
AP Physics  Problem Drill 17: Electromagnetism Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. A house has a wall that has an area of 28 m
More informationPHYS 202 Notes, Week 6
PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic
More informationPhysics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION
1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called
More information1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wbturns 1.
1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wbturns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil
More informationExam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014
Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal
More informationAP Physics C  E & M
AP Physics C  E & M Electromagnetic Induction 20170714 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law
More informationSection 11: Magnetic Fields and Induction (Faraday's Discovery)
Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding
More informationInduction_P1. 1. [1 mark]
Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and
More informationApplication Of Faraday s Law
Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions
More informationAgenda for Today. Elements of Physics II. Forces on currents
Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationInduced Electric Field
Lecture 18 Chapter 30 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7
More informationProblem Solving: Faraday s Law & Inductance. Faraday s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving: Faraday s Law & Inductance Section Table Names Faraday s Law In Chapter 10 of the 8.02 Course Notes, we have seen that
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationGeneral Review. LECTURE 16 Faraday s Law of Induction
Electrostatics General Review Motion of q in eternal Efield Efield generated b Sq i Magnetostatics Motion of q and I in eternal Bfield Bfield generated b I Electrodnamics Time dependent Bfield generates
More informationElectromagnetic Induction and Faraday s Law
Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence
More informationSection 11: Magnetic Fields and Induction (Faraday's Discovery)
Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding
More informationDO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION
DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic
More informationFXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :
1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is
More informationCh 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?
Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V
More informationPHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism
PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law  GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed
More informationChapter 23: Magnetic Flux and Faraday s Law of Induction
Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the
More informationChapter 5: Electromagnetic Induction
Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area
More informationPhysics 11b Lecture #13
Physics 11b Lecture #13 Faraday s Law S&J Chapter 31 Midterm #2 Midterm #2 will be on April 7th by popular vote Covers lectures #8 through #14 inclusive Textbook chapters from 27 up to 32.4 There will
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationFaraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents
Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!
More informationInduced Electric Field
Lecture 20 Chapter 30 Induced Electric Field This fool said some nonsense that the electric field can be produced from the magnetic field. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii
More informationMotional EMF. Toward Faraday's Law. Phys 122 Lecture 21
Motional EMF Toward Faraday's Law Phys 122 Lecture 21 Move a conductor in a magnetic field Conducting rail 1. ar moves 2. EMF produced 3. Current flows 4. ulb glows The ig Idea is the induced emf When
More informationElectromagnetic Induction and Waves (Chapters 3334)
Electromagnetic nduction and Waves (Chapters 3334) The laws of emf induction: Faraday s and Lenz s laws Concepts of classical electromagnetism. Maxwell equations nductance Mutual inductance M Self inductance
More informationElectroMagnetic Induction
ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationPhysics 2B: Review for Celebration #2. Chapter 22: Current and Resistance
Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric
More informationPulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit.
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity &
More informationElectromagnetism Notes 1 Magnetic Fields
Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many
More informationElectromagnetic Induction
Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationElectromagnetic Induction Practice Problems Homework PSI AP Physics B
Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.
More informationPHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is
More informationA Generator! Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 22
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. To keep the wire moving you must supply a force to overcome the
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction SelfInductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors
More informationLecture 33. PHYC 161 Fall 2016
Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall
More informationChapters 34,36: Electromagnetic Induction. PHY2061: Chapter
Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 3435 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators
More informationElectromagnetic Induction. Bo Zhou Faculty of Science, Hokudai
Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,
More informationGeneral Physics (PHYC 252) Exam 4
General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 13, consider a car battery with 1. V emf and internal resistance r of. Ω that is
More informationInduced Electric Field
Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications
More informationFaraday s Law; Inductance
This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, selfinductance, inductance, RL circuits, and energy in a magnetic field, with some
More informationChapter 30 Inductance and Electromagnetic Oscillations
Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 SelfInductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationElectromagnetic Induction! March 11, 2014 Chapter 29 1
Electromagnetic Induction! March 11, 2014 Chapter 29 1 Notes! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic Induction Material from the week before
More informationChapter 21 Lecture Notes
Chapter 21 Lecture Notes Physics 2424  Strauss Formulas: Φ = BA cosφ E = N Φ/ t Faraday s Law E = Bvl E = NABω sinωt M = (N 2 Φ 2 )/I 1 E 2 = M I 1 / t L = NΦ/I E = L I/ t L = µ 0 n 2 A l Energy =
More informationSlide 1 / 50. Electromagnetic Induction and Faraday s Law
Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Electromagnetic Induction and Faraday s Law Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationInduction and inductance
PH C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following
More informationMichael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law
Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction
More informationUniversity of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set
University of the Philippines College of Science PHYSICS 72 Summer 20122013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change
More informationSt. Vincent College PH : General Physics II. Exam 5 4/8/2016
St. Vincent College PH 11201: General Physics II Exam 5 4/8/2016 The exam consists of 4 questions. The questions may not be worth the same number of points, so read the entire exam before beginning work.
More informationPS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions
PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,
More informationAP Physics C Unit 11: Electromagnetic Induction. Part 1  Faraday s Law and Lenz s Law
AP Physics C Unit 11: Electromagnetic Induction Part 1  Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in
More informationCHAPTER 5 ELECTROMAGNETIC INDUCTION
CHAPTER 5 ELECTROMAGNETIC INDUCTION 1 Quick Summary on Previous Concepts Electrostatics Magnetostatics Electromagnetic Induction 2 Cases of Changing Magnetic Field Changing Field Strength in a Loop A Loop
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More information18 Faraday's Law, Lenz's Law
18 Faraday's Law, Lenz's Law Do you remember Archimedes s Principle? We were able to say something simple, specific, and useful about a complicated phenomenon. The gross idea was that a submerged object
More informationr where the electric constant
0. Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, grounding and charge conservation. b) Describe the motion of point charges when
More information10 Chapter. Faraday s Law of Induction
10 Chapter Faraday s Law of Induction 10.1 Faraday s Law of Induction... 103 10.1.1 Magnetic Flux... 105 10.2 Motional EMF... 106 10.3 Faraday s Law (see also Faraday s Law Simulation in Section 10.13)...
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows
More informationPRACTICE EXAM 2 for Midterm 2
PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationK204: FARADAY'S EXPERIMENT  EME K243: LENZ'S LAW  PERMANENT MAGNET AND COILS
K204: FARADAY'S EXPERIMENT  EME SET  20, 40, 80 TURN COILS K262: CAN SMASHER  ELECTROMAGNETIC K243: LENZ'S LAW  PERMANENT MAGNET AND COILS K244: EDDY CURRENT PENDULUM K406: MAGNETOELECTRIC GENERATOR
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationAP Physics 2 Electromagnetic Induction Multiple Choice
Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the
More informationPHYS 1444 Section 003 Lecture #18
PHYS 1444 Section 003 Lecture #18 Wednesday, Nov. 2, 2005 Magnetic Materials Ferromagnetism Magnetic Fields in Magnetic Materials; Hysteresis Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced
More informationPHYS 1442 Section 004 Lecture #14
PHYS 144 Section 004 Lecture #14 Wednesday March 5, 014 Dr. Chapter 1 Induced emf Faraday s Law Lenz Law Generator 3/5/014 1 Announcements After class pickup test if you didn t Spring break Mar 1014 HW7
More informationPhysics 115. Magnetic forces, Coils, Induction. General Physics II. Session 29
Physics 115 General Physics II Session 29 Magnetic forces, Coils, Induction R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/22/14 1 Lecture Schedule Today
More informationReview of Faraday & Lenz s Laws
Review of Faraday & Lenz s Laws For a conducting loop in a magnetic field: Faraday s Law gives the Induced EMF and Current: which way? Lenz s Law gives the direction of the induced current: Resistance
More informationFig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.
1 (a) Fig. 2.1 shows a horizontal currentcarrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles
More information