Electromagnetic Induction and Waves (Chapters 33-34)

Size: px
Start display at page:

Download "Electromagnetic Induction and Waves (Chapters 33-34)"

Transcription

1 Electromagnetic nduction and Waves (Chapters 33-34) The laws of emf induction: Faraday s and Lenz s laws Concepts of classical electromagnetism. Maxwell equations nductance Mutual inductance M Self inductance L. nductors Magnetic field energy Simple inductive circuits RL circuits LC circuits LRC circuits EM waves Maxwell s equations and EM waves Energy and momentum in EM waves: Poynting vector

2 The other side of the coin We ve seen that an electric current produces a magnetic field. Should we presume that the reverse is valid as well? Can a magnetic field produce an electric current? Yes, magnetic fields can produce electric fields through electromagnetic induction Most of the electric devices that we use as power supplies are electric generators based on induced emf : these generators convert different forms of energy first into mechanical energy and then, by induction, into electric energy Electromagnetic induction was first demonstrated experimentally by Michael Faraday Experimental setup: A primary coil connected to a battery A secondary coil connected to an ammeter Observations: When the switch is closed, the ammeter reads a current and then returns to zero When the switch is opened, the ammeter reads an opposite current and then returns to zero When there is a steady current in the primary circuit, the ammeter reads zero Conclusions: An electrical current is produced by a changing magnetic field The secondary circuit acts as if a source of emf were connected to it for a short time t is customary to say that an induced emf is produced in the secondary circuit by the changing magnetic field. Let s look closer at why this happens

3 Def: The electric flux of a uniform magnetic field crossing a surface A under an angle θ with respect to the normal to the surface is Acos Gauss s Law Electric Flux n order to quantify the idea of emf induction, we must introduce the magnetic flux since the emf is actually induced by a change in magnetic flux rather than generically by a change in the magnetic field Magnetic flux is defined in a manner similar to that of electrical flux: da A θ f the field varies across the surface, one must integrate the contribution to the flux for every element of surface: θ T m Weber Wb S Ex: The uniform field lines penetrate an area A perpendicular and then parallel to the surface, produce maximum and zero fluxes A 0 A A Anˆ Exercise 1: Gauss s law can be reformulated for magnetic sources. Try to do it yourself: what is the magnetic flux through a closed surface around a magnetic source?

4 Quiz: 1. Given a solenoid, through which of the shown surfaces is the magnetic flux larger? A 4 A 1 A A 3 A 1 A A 3 A 4. A long, straight wire carrying a current is placed along the axis of a cylindrical surface of radius r and a length L. What is the total magnetic flux through the cylinder? a) L L 0 b) 0 L r c) Zero r

5 Electromagnetic nduction Faraday s Law and Lenz s Law The involvement of magnetic flux in the electromagnetic induction is described explicitly by Faraday s Law: The instantaneous emf induced in a circuit equals the time rate of change of magnetic flux Φ through the circuit d dt Comments: Since Φ = Acosθ the change in the flux, dφ, can be produced by a change in, A or/and θ f the circuit contains N loops (such as a coil with N turns) N d The negative sign in Faraday s Law is included to indicate the polarity of the induced emf, which is more easily found using: Lenz s Law: The direction of any magnetic induction effect is to oppose the cause of the respective effect Ex: Causes of EM induction can be: varying magnetic fields, currents, emfs, or forces determining a change in flux for instance by varying the area exposed to the magnetic field. nduced effects may be magnetic fields, emfs, currents, forces, electric fields dt

6 Electromagnetic nduction Applying Lenz s Law Magnetic flux through a loop can be varied by moving a bar magnet in proximity 1. f the bar magnet is moved toward a loop of wire: As the magnet moves, the magnetic flux increases with time The induced current will produce a magnetic field opposing the increasing flux, so the current is in the direction shown This can be seen as a repelling effect onto the incoming bar by the loop seen as a magnet. f the bar magnet is moved away from a loop of wire: As the magnet moves, the magnetic flux decreases with time repels the incoming North The induced current will produce a magnetic field helping the decreasing flux, so the current is in the direction shown This can be seen as a attraction effect onto the bar by the loop seen as a magnet ind ind attracts the departing North

7 Exercise : Lenz s Law Consider a loop of wire in an external magnetic field ext. y varying ext, the magnetic flux through the loop varies an a current flows through the wire. Let s use Lenz t law to find the direction of the current induced in the loop when a) ext decreases with time, and decreasing ext b) ext increases with time increasing ext

8 Exercises: 3. Emf induced by moving field: A bar magnet is positioned near a coil of wire as shown in the figure. What is the direction of the induced magnetic field in the coil and the induced current through the resistor when the magnet is moved in each of the following directions. a) to the right b) to the left v b 4. Emf induced by switching field on and off: Find the direction of the current in the resistor in the figure at each of the following times. a) at the instant the switch is closed b) after the switch has been closed for several minutes c) at the instant the switch is opened Problem: 1. Emf induced by reversing field: A wire loop of radius r lies so that an external magnetic field 1 is perpendicular to the loop. The field reverses its direction, and its magnitude changes to in a time Δt. Find the magnitude of the average induced emf in the loop during this time in terms of given quantities.

9 We ve seen that, in certain conditions, motion can determine an emf we are interested in this phenomenon since it stays behind converting mechanical energy into electric energy To see how it happens, consider a straight conductor of length L moving with constant velocity v perpendicular on a uniform field : the electric carriers in the conductor experience a magnetic force qv along the conductor, as on the figure Notice that the electrons tend to move to the lower end of the conductor, such that a negative charge accumulate at the base Consequently, a positive charge forms at the upper end of the conductor, such that, as a result of this charge separation, an electric field E is produced in the conductor Charges build up at the ends of the conductor until the upward magnetic force (on positive carriers forming a current) is balanced by the downward electric force qe V EL FL q vl ab Motional emf Across a conductor moving in a magnetic field The potential difference between the ends of the conductor is similar with the potential difference between the plates of a charged capacitor: This motional emf is maintained across the conductor as long as there is motion L Ex: The magnetic field of Earth is about T. Therefore, if a straight 1-m metallic rod is moved perpendicular on the field with a speed of 1 m/s, the emf produced across it ends is about V q a + + b Fm Fe qv v qe

10 Motional emf Producing current in a circuit Consider now that the moving bar on the previous slide has a negligible resistance and it slides on rails connected in a circuit to a resistor R, as in the figure As the bar is pulled to the right with a velocity v by an applied force, the free charges move along the length of the bar producing a potential difference and consequently an induced current through R The motional emf induced in the circuit acts like a battery with an emf vl R vl R n general, for any conductor moving with velocity v in a magnetic field we have an alternative expression for Faraday s law: v dl R R v L The charge carriers are pushed upward by the magnetic force vl The integral is around a closed conductor loop force per unit charge acted on the element dl of conductor moving in the external magnetic field

11 Motional emf Explained using Faraday and Lenz s Laws Alternatively, we can look at the same situation but using Faraday and Lenz s laws: the changing magnetic flux through the loop and the corresponding induced emf in the bar result from the change in area of the loop 1. ncreasing circuit area: The magnetic flux through the loop increases y Lenz s law the induced magnetic field ind must oppose the external magnetic field ext. The direction of the current that will create the induced magnetic field is given by RHR #.. Decreasing circuit area: The magnetic flux through the loop decreases R ind ext F m ind v F applied y Lenz s law the induced magnetic field ind must help the external magnetic field ext. The direction of the current that is reversed compared with the case above. Then, by Faraday s Law, we obtain the same expression for the induced emf: d da dx L Lv dt dt dt R ind ext v ind da dx L

12 Problems:. Gravity as applied force to induce emf: A metallic rod of mass m slides vertically downward along two rails separated by a distance l connected by a resistor R. The system is immersed in a constant magnetic field oriented into the page. a) Calculate the current flowing through the resistor R when the magnetic force on the rod becomes equal to its weight. b) Calculate the emf induced across the resistor R. c) Use Faraday s Law to compute the speed of the rod when the net force on it is zero. m l R 3. Faraday disk: A thin conducting disk with radius R laying in xy-plane rotates with constant angular velocity ω around z-axis in a uniform magnetic field parallel with z. Find the induced emf between the center and the rim of the disk.

13 Applications Electric Generators An alternating Current (ac) generator converts mechanical energy to electrical energy by rotating loops of wire in magnetic fields There is a variety of sources that can supply the energy to rotate the loop, including falling water, heat by burning coal or nuclear reactions, etc. asic operation of the generator: as the loop rotates, the magnetic flux through its surface A changes with time, such that an emf is induced For constant angular speed ω = dθ/dt, d d d Acos Asin dt dt dt r θ v A sint sint max Comments: The emf polarity varies sinusoidally (ac signal) ε = ε max when loop is parallel to the field ε = 0 when the loop is perpendicular to the field ω v r v θ = ωt

14 Concepts of classical electromagnetism nduced electric fields One of the main concepts that you must retain from our discussion about induction is that a changing magnetic flux can produce an electric field (manifested as an emf) even in the absence of a magnetic field in the region where the charges move. Ex: Recall that varying the current in the inner solenoid will induce a current in the outer solenoid even though the field outside the inner solenoid is negligible and the outer solenoid doesn t move An electric field induced by a varying magnetic field flux is called nonelectrostatic field, and it doesn t need the presence of a conductor Moreover, unlike the electrostatic fields (created by charge distributions) they are not conservative For instance, for a stationary loop of induced current or field, the emf is given by Faraday s law: d dt E dl increasing which means that the work done by the field around the loop is not zero for closed paths a property of nonconservative fields Therefore, we cannot associate a potential with this kind of electric field However, a charge in such a field is still acted by a force 0 E E F E E qe or E ind

15 Concepts of classical electromagnetism Displacement current n conclusion, electromagnetism stems from the symmetry between electricity and magnetism: a changing magnetic flux can produce an electric field and a varying electric field creates a magnetic field. This interplay can be seen by looking at Maxwell s discovery: the displacement current due to a varying electric flux Φ E Consider a parallel plate capacitor: the fact that the ordinary conduction current (apparently) stops on the plates can trouble Ampere s law; for instance, the two surfaces in the figure have the same boundary, but the currents are different ( and 0). To solve the contradiction, Maxwell assumed the existence of a continuation of the current inside the capacitor: the displacement current D given by the change in electric flux: dl 0 D encl 0 0 So, the displacement current has its own measurable magnetic field d dt E encl

16 Concepts of classical electromagnetism Maxwell equations n 1865, James Clerk Maxwell provided a mathematical theory know today as classical electromagnetism that unified electric and magnetic interactions Maxwell s equations crystallize some of the ideas we ve discussed in class, showing that electric and magnetic fields play symmetric, complementary roles in nature: Thus, for charges and currents in an empty space (no dielectric or magnetic material present) Maxwell s equations are: E da da E dl q encl 0 dl d dt missing terms: no magnetic monopoles (Gauss s Law) if varies, the resulting E is not conservative d dt E encl (Faraday s Law) (Ampere s Law) electric monopoles: magnetic field is never conservative

17 Quiz 4. The adjacent magnetic field is decreasing. Which of the fields below is the induced electric field equivalent to an induced current? a) b) c) d) Problem: 4. Magnetic field inside a charging capacitor: A parallel-plate capacitor with circular plates of radius R is being charged by a constant current. Find the magnetic field at an arbitrary distance r from the axis of the capacitor.

18 y Faraday s law, changing a current in a coil induces an emf in an adjacent coil: this coupling is called mutual inductance Consider two coils with N 1 and N turns. The variation of current in the first coil corresponds to a proportionally varying flux through the second: y Faraday s law N M i N 1 1 d dt mutual induction di 1 M1 dt The mutual-inductance depends on the geometry of the two coils and on the presence of a magnetic material as a core. f the material has linear magnetic properties, the mutual inductance is a constant. The discussion is symmetric in the opposite direction, so we have M M M nductance Mutual inductance N M Henry H i1 i N 1W A

19 nductance Self inductance Notice that nothing prevents a changing flux to produce an emf in the very coil that produces the actual flux: this phenomenon is called self-inductance: discovered in the 19 th century by Joseph Henry Ex: Consider a current carrying loop of wire f the current increases in a loop, the magnetic flux through the loop surface due to this current also increases: hence, an emf is induced that opposes the change in magnetic flux This opposing emf results in a slowed down increase of the current through the loop Alternatively, if the current decreases, the self-inductance will slow down the rate of decrease The self-induced emf is proportional to the rate of change of the current through the coil: di L dt negative sign indicates that a changing current induces an emf in opposition to that change L is a proportionality constant called the inductance of the coil: Def: f a circuit with N loops carrying a current produces a magnetic flux Φ through each loop surface, the self-inductance is given by L N L Henry (H) S

20 nductance nductors L characterizes solenoids as elements of circuit called inductors Since the flux is proportional to the current, the inductance of a solenoid does not depend on the current flowing through the coil: it is a characteristic of the device, depending on geometric factors and the magnetic properties of the interior of the coil Ex: Self inductance of a straight solenoid: A straight solenoid with n turns per length, and volume V has inductance given by: A L N N N n 0 A n A L n V 0 0 nductance can be interpreted as a measure of opposition to the rate of change in the current: it determines a potential difference or a back emf across the terminals i A ε back <0 ε back >0 A device with self-inductance (such as a coil) is called an inductor: a circuit element with a certain inductance an additional circuit element besides capacitors and resistors Symbol: L i a b Potential difference: V V V L di dt ab a b back drop if di/dt > 0 raise if di/dt < 0 0 if i = const.

21 Energy Stored in a Magnetic Field Summary of circuit elements The work done by a battery to produce an increasing current against the back emf of an inductor can be thought of as energy stored L ab in the magnetic field inside the inductor UL 1 L Contrast with the energy dissipated across a current carrying resistor: PR 1 R Or the energy stored in the electric field of a charged capacitor: UC 1 CV A A A U Pdt iv dt L idi d L R C 0nA 0 A Ad V L L di dt The magnetic energy density stored in a straight solenoid inductor is given by u V 1 U L L 0 1 V V n V 1 n VR V C R Q C 0 this is, in general, the magnetic energy density in vacuum nside a magnetic material such that an iron core inside a solenoid μ 0 is to be replaced with μ : magnetic permeability in the respective material

22 nductive circuits LR-circuit: principles An inductor can be combined in series with a resistor into a dc-rl circuit to obtain a specific behavior Recall that the resistance R is a measure of opposition to the current while the inductance L measures the opposition to the rate of change of the current. Let s see what s happening in an RL circuit: 1. Close S 1 and open S : the RL series circuit is completed across a battery ε As the current begins to increase, the inductor produces a negative back emf ε L < 0 that opposes the increasing current, so the current doesn t change from 0 to its maximum instantaneously When the current reaches its maximum, the rate of change and the back emf ε L = 0. Open S 1 and close S : the RL series circuit is completed with battery removed Since there is no battery, the current starts to decay, such that the inductor produces a positive back emf ε L > 0 to help the current. f the current becomes zero, the rate of change and the back emf are ε L = 0 Kirchhoff rule applies in both cases (set ε = 0 when current is decaying): i R ε S 1 : i S : S 1 S L ε L <0 ε L >0 di ir L 0 ir L 0 dt

23 nductive circuits LR-circuit: characteristics 1. The current in the RL circuit in series with a battery increases exponentially to max = ε/r: di 0 Rt L ir L i 1 e dt R The time constant, τ = L/R, for an RL circuit is the time required for the current in the circuit to reach 63.% of its final value A circuit with a large time constant will take a longer time to reach its maximum current i e 1 t max. The current in the RL circuit without a battery decays exponentially from its initial value 0 : di Rt L ir L 0 i 0e dt f the current reached the maximum value before the battery was disconnected, it is given by 0 = max = ε/r i t 0e

24 nductive circuits LC-circuit: principles An inductor connected across a charged capacitor form an electric oscillator with oscillating current and charge called a dc-lc circuit. Functionality: 1. As the capacitor discharges, current increases from 0 to a maximum value and the potential difference across both elements decreases gradually to 0: the electric energy is stored in the form of magnetic energy. When the current reaches its maximum, the capacitor starts to recharge with an inverse polarity than initially until the current is again zero and the process restarts in the reverse direction electric energy magnetic energy cycle

25 di q vl vc 0 L 0 dt C The SHO solutions are Charge: Current: nductive circuits RL-circuit: characteristics Kirchhoff rule can be applied to find the equation describing the oscillations of charge and current: 1 LC q Qcost maximum charge initial phase angle given by the charge at t = 0 dq i Q sin t dt dq q 0 We see that the charge on the capacitor satisfies an equation similar with that of a Simple Harmonic Oscillator with angular frequency dt Angular frequency ω = 1/LC Q Q i max i max di dt di dt max max q i di/dt φ = π/ T v v C L q C di L dt L q Qcos t T/ 3T/ φ = 0 T T i C +q q q Qcost t T t T t T i

26 Exercise 5: LC oscillations compared with a mechanical analog: Recall that in PHY181 we studied the oscillations of a SHO containing a mass m connected to a light spring of force constant k oscillating on a frictionless horizontal surface. a) Do you remember the SHO equation in this case? k m 0 x b) Find the oscillating quantities analogue to electric quantities oscillating in the LC circuit: LC: charge q current i change in current di/dt Spring: Problem: 5. LC oscillator: A power supply with emf ε is used to fully charge up a capacitor C. Then the capacitor is connected to an inductor L. a) What is the frequency and period of the LC circuit? b) Find the maximum charge, the maximum current and the maximum rate of change of current in the circuit. c) Write out the time dependency of the charge, current and rate of change of current considering t = 0 the first time when the capacitor holds only half of its maximum charge. d) Sketch the q vs t graph.

27 Electromagnetic Waves Maxwell s prediction and Hertz s confirmation Maxwell s electromagnetism modeled the coupling between electric and magnetic fields and predicted that varying magnetic and electric fields may continually create each other and propagate in the form of electromagnetic waves Ex: radio waves, visible light, X-rays etc. Maxwell obtained theoretically the speed of this propagating EM disturbance (speed of light) created by an accelerating charge Ex: A charge oscillating harmonically transmits a wave: the clip shows the wave transmitted transversally along a horizontal line of field Short time after Maxwell s prediction, Heinrich Hertz confirmed the electromagnetic waves experimentally using two LC circuits When in resonance, the circuits exchanged energy, and Hertz hypothesized the energy transfer was in the form of electromagnetic waves So, he confirmed Maxwell s theory by showing the waves existed and had all the properties of light waves such as experiencing reflection, refraction and diffraction

28 Electromagnetic Waves Produced using an Antenna When a charged particle is accelerated, it must radiate energy, such that, if currents change rapidly in a circuit, some energy is transmitted in the form of EM waves For instance, an alternating voltage applied to an antenna forces the electric charge in the antenna to oscillate and transmit an EM wave Ex: A simple EM-wave emitter Consider two rods connected to a source of alternating current: charges oscillate producing a polarization (a) and thus an electric field E As oscillations continue, the rods become less charged, the E-field near the charges decreases, while the field produced at t = 0 moves away from the rod (b) Then the charge polarization and the corresponding field reverse (c) t = 0 t = T/4 t = T/ t = T Notice that, due to the change of electric field, a magnetic field is generated perpendicular on the electric field E and, as the current changes, the magnetic field spreads out from the antenna in conjunction with the electric field The oscillatory correlated electric and magnetic fields are transmitted in space with speed of light c, and a frequency given by the frequency of the current oscillation in the antenna E E a) b) c) d) E E

29 Electromagnetic Waves Properties n conclusion, an electromagnetic wave is formed of oscillating electric and magnetic fields perpendicular to each other and perpendicular on the direction of propagation of the wave: so, the electromagnetic waves are transverse waves The electromagnetic wave produced by a charge oscillating harmonically produces at a large distance a sinusoidal wave, ˆ max cos, ˆ cos E x t ye kx t x t z kx t max The directions of the E and vectors are given by a right hand rule (call it #3): where EM-waves travel at the speed of light c which can be written in terms of the electric and magnetic properties of the medium of propagation, ε 0 and μ 0 Also, the theory predicts that the magnitudes of the E and fields are related by: k is the wave number, k = π/λ ω is the angular frequency, ω = π/t E max c max ce L max 0 0 max λ c 1 0 0

30 Electromagnetic Waves Energy and momentum. Poynting Vector Recalling the energy density carried by the electric and magnetic fields, we obtain the energy carried by an EM-wave in vacuum: u 0E E E E 0 0 The elementary amount of energy transported by the wave front A with speed c per unit area per unit time is given by the energy contained in a volume Acdt 1 du 1 udv dx S u c A dt A dt dt 0 E c Def: The energy flow rate is the magnitude of a vector called Poynting vector with the direction given by the direction of wave propagation S 0 E 0 1 E J W S S m s m Therefore, the power imparted by the wave over a certain surface A can be calculated using P S da

31 Electromagnetic Waves Radiation Pressure Since EM-waves carry energy as they travel through space, this energy can be transferred to objects placed in their path Since the component fields are alternating, the energy carried by EM waves is shared equally by the electric and magnetic fields The average power P per unit area A is called intensity of the wave, given by the average of the Poynting vector over one cycle: Hence, EM-waves transport linear momentum as well as energy. The momentum delivered to a surface is 1. For complete absorption of energy U,. For complete reflection of energy U, Therefore, using Newton s nd law, we see that the force exerted by EM waves perpendicular onto surfaces is given by: F E E c c S max max max dp Adt c dp Adt c max p p p A complete absorption: F dp c dt A complete reflection: F c

32 Problem: 6. Radiation pressure: An electromagnetic wave travels in vacuum vertically downward along z-direction with the perpendicular EM-fields in the x and y-directions, as in the figure. The beam strikes perpendicularly a perfectly reflective disk of radius r and mass m. a) Calculate the intensity of the beam knowing that the disk accelerates downward with an acceleration a. b) Show the directions and calculate the maximum amplitudes of the electric and magnetic fields. c) What should be the intensity of the beam required to levitate the disk? x z r y

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

CHAPTER 29: ELECTROMAGNETIC INDUCTION

CHAPTER 29: ELECTROMAGNETIC INDUCTION CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric

More information

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction In this chapter we investigate how changing the magnetic flux in a circuit induces an emf and a current. We learned in Chapter 25 that an electromotive force (E) is

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1 Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15, Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

More information

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 34-35 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators

More information

Chapter 30 Inductance and Electromagnetic Oscillations

Chapter 30 Inductance and Electromagnetic Oscillations Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 Self-Inductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

More information

Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26. Inductance by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Electromagnetic Induction 2017-07-14 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Faraday s Law; Inductance

Faraday s Law; Inductance This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Last time. Ampere's Law Faraday s law

Last time. Ampere's Law Faraday s law Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface

More information

Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Module 22 and 23: Section 11.1 through Section 11.4 Module 24: Section 11.4 through Section Table of Contents

Module 22 and 23: Section 11.1 through Section 11.4 Module 24: Section 11.4 through Section Table of Contents Module and 3: Section 11.1 through Section 11.4 Module 4: Section 11.4 through Section 11.13 1 Table of Contents Inductance and Magnetic Energy... 11-3 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

Electricity & Magnetism

Electricity & Magnetism Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B

More information

Induction and inductance

Induction and inductance PH -C Fall 01 Induction and inductance Lecture 15 Chapter 30 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th etion) 1 Chapter 30 Induction and Inductance In this chapter we will study the following

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 Question teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Lecture 10 Induction and Inductance Ch. 30

Lecture 10 Induction and Inductance Ch. 30 Lecture 10 Induction and Inductance Ch. 30 Cartoon - Faraday Induction Opening Demo - Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

(a) zero. B 2 l 2. (c) (b)

(a) zero. B 2 l 2. (c) (b) 1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Lecture 22. Inductance. Magnetic Field Energy.

Lecture 22. Inductance. Magnetic Field Energy. Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Problem Fig

Problem Fig Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

Motional Electromotive Force

Motional Electromotive Force Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric

More information

Chapter 32. nductance

Chapter 32. nductance Chapter 32 nductance C HAP T E R O UT N E 321 elf-nductance 322 R Circuits 323 Energy in a Magnetic Field 324 Mutual nductance 325 Oscillations in an Circuit 326 The R Circuit An airport metal detector

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

Physics 1308 Exam 2 Summer Instructions

Physics 1308 Exam 2 Summer Instructions Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

More information

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak. Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings

More information

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by PHY049 Spring 008 Prof. Darin Acosta Prof. Selman Hershfield April 9, 008. A metal rod is forced to move with constant velocity of 60 cm/s [or 90 cm/s] along two parallel metal rails, which are connected

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

Inductance. Chapter Outline Self-Inductance 32.2 RL Circuits 32.3 Energy in a Magnetic Field

Inductance. Chapter Outline Self-Inductance 32.2 RL Circuits 32.3 Energy in a Magnetic Field P U Z Z L E R The marks in the pavement are part of a sensor that controls the traffic lights at this intersection. What are these marks, and how do they detect when a car is waiting at the light? ( David

More information

October 23. Physics 272. Fall Prof. Philip von Doetinchem

October 23. Physics 272. Fall Prof. Philip von Doetinchem Physics 272 October 23 Fall 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_fall_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Fall 14 - von Doetinchem - 170 Motional electromotive

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

More information

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d).

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d). 34 Chapter 7. The energy stored in an inductor of inductance and carrying current is PE 1. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4

More information

Lecture 22. Inductance. Magnetic Field Energy.

Lecture 22. Inductance. Magnetic Field Energy. Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Dr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009

Dr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009 Dr. Fritz Wilhelm page 1 of 13 C:\physics\3 lecture\ch31 Faradays law.docx; 5/3/9 Homework: See website. Table of Contents: 31.1 Faraday s Law of Induction, 31. Motional emf and Power, 4 31.a Transformation

More information

University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework Due This Week Exam Next Wednesday!

University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework Due This Week Exam Next Wednesday! Vector pointing OUT of page University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework Due This Week Exam Next Wednesday! (April 9) Dr. Todd Satogata (ODU/Jefferson Lab)

More information

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

LECTURE 17. Reminder Magnetic Flux

LECTURE 17. Reminder Magnetic Flux LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information