ε induced Review: Selfinductance 20.7 RL Circuits Review: Selfinductance B induced Announcements


 Melissa Cameron
 4 years ago
 Views:
Transcription
1 Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections (alternating current circuits) Review: Selfinductance induced ε induced QUESTIONS? PLEASE ASK! Review: Selfinductance 20.7 RL Circuits Selfinductance occurs when the changing flux through a circuit arises from the circuit itself The selfinduced EMF must be proportional to the time rate of change of the current ΔΦ ε = N Δ t ΔI ε = L Δt L is inductance of the device; the negative sign indicates that a changing current induces an EMF in opposition to that change The inductance of a coil depends on geometric factors The SI unit of selfinductance is the Henry: 1 H = 1 (V s) / A N The expression for L is L N ΔΦ Φ = = Δ I I Consists of voltage source, a resistor, and an inductor: When the current reaches its maximum, the rate of change and the back emf are zero The time constant, τ, for an RL circuit is the time required for the current in the circuit to reach 63.2% of its final value: L τ = R The current at any time can be found by ε I = R t / τ ( 1 e ) 1
2 20.8 Energy Stored in a Magnetic Field The battery has to do work to produce a current against the back EMF This work can be thought of as energy stored by the inductor in its magnetic field > potential energy! The energy stored in an inductor is: PE L = ½ L I 2 Analogous to energy stored in a capacitor: E = ½ Q 2 /C Problem: 20.50, p694 In the circuit to the right, ε = 6.00V, L = 8.00 mh, and R = 4.00 Ω. (a) (b) (c) (d) What is the inductive time constant of the circuit? Calculate the current in the circuit 250 μs after the switch is closed. What is the final value of the steady state current? How long does it take the current to reach 80% of its maximum value? 20.8: Maxwell s Theory of Electromagnetism Chapter 21 Electromagnetic (We re skipping Sections ) Electricity and magnetism were originally thought to be unrelated in 1865, James Clerk Maxwell developed a unified theory of electromagnetism Started from the following observations (thanks to Gauss and Faraday!) Electric field lines originate on positive charges and terminate on negative charges Magnetic field lines always form closed loops they do not begin or end anywhere A varying magnetic field induces an EMF and hence an electric field (Faraday s Law) Magnetic fields are generated by moving charges or currents (Ampère s Law) 2
3 Maxwell Equations All fundamental information about E&M is contained in these equations! Source: Wikipedia Don t worry  you are not expected to know this for PHY 2054 (If you want to, you should major in physics!) Hertz s Confirmation: Generation of Radio Hertz used an LC circuit It oscillates! It radiates! How does it work? Switch closes; current flows to capacitor An EMF source is connected to provide current and then taken out of the circuit The capacitor charges fully total energy of the circuit is stored in capacitor (electric field); the current is zero and no energy is stored in the inductor The capacitor then discharges energy stored in the electric field decreases and the current increases energy stored in the inductor (magnetic field) increases When the capacitor is fully discharged, there is no energy stored in its electric field When the current is a maximum, all the energy is stored in the magnetic field in the inductor The process repeats in the opposite direction The energy sloshes around the circuit; there is a continuous transfer of energy between the inductor and the capacitor E = ½ Q 2 /C E = ½ L I 2 Hertz Measures the Speed of the Hertz measured the speed of the waves from the transmitter He used the waves to form an interference pattern and calculated the wavelength From v = f λ, v was found v was very close to 3 x 10 8 m/s, the known speed of light Why this works  Electromagnetic Produced by an Antenna When a charged particle accelerates, it radiates energy When currents in an AC circuit change rapidly, energy is radiate in the form of EM waves EM waves are radiated by any circuit carrying alternating current An alternating voltage applied to the wires of an antenna forces the electric charges in the antenna to oscillate 3
4 Electromagnetic are Transverse The E and fields are perpendicular to each other oth fields are perpendicular to the direction of motion E&M waves are transverse waves Electromagnetic waves travel at the speed of light c = 1 μ ε ecause EM waves travel at a speed that is precisely the speed of light, light is an electromagnetic wave o o Properties of EM (stated with out proof) For an E&M wave: E c = Energy is carried by EM waves; it is shared equally by the electric and magnetic fields Average power per unit area = 2 2 Emaxmax Emax cmax I = = = 2μ 2μ c 2μ o o o Intensity (I) is average power per unit area Electromagnetic waves transport momentum as well as energy For complete absorption of energy U, p=u/c For complete reflection of energy U, p=(2u)/c The Spectrum of EM EM waves are distinguished by their frequencies and wavelengths c = ƒλ Wavelengths for visible light range from 400 nm to 700 nm There is no sharp division between one kind of EM wave and the next Doppler Equation for EM The Doppler effect for EM waves u fo fs 1 ± c f o is the observed frequency f s is the frequency emitted by the source u is the relative speed between the source and the observer The equation is valid only when u is much smaller than c 4
5
Announcements Selfinductance. Selfinductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9.10) τ = R. Electromagnetic Waves
Chapter 21.813(not.9.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 2122 Office hours: My office hours today
More informationELECTROMAGNETIC INDUCTION AND FARADAY S LAW
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic
More informationChapter 22. Induction
Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected
More informationElectromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance
Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic
More informationInductance, RL and RLC Circuits
Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic
More informationPHYS 1444 Section 004 Lecture #22
PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,
More informationChapter 30 Inductance and Electromagnetic Oscillations
Chapter 30 Inductance and Electromagnetic Oscillations Units of Chapter 30 30.1 Mutual Inductance: 1 30.2 SelfInductance: 2, 3, & 4 30.3 Energy Stored in a Magnetic Field: 5, 6, & 7 30.4 LR Circuit: 8,
More informationLecture 13.2 :! Inductors
Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.633.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!
More informationPHYS 202 Notes, Week 6
PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationHandout 10: Inductance. SelfInductance and inductors
1 Handout 10: Inductance SelfInductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This
More informationMagnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves. Reading Journals for Tuesday from table(s)
PHYS 2015  Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive
More informationInductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits
Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction SelfInductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors
More informationPhysics 2020 Exam 2 Constants and Formulae
Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67
More informationAC Circuits and Electromagnetic Waves
AC Circuits and Electromagnetic Waves Physics 102 Lecture 5 7 March 2002 MIDTERM Wednesday, March 13, 7:309:00 pm, this room Material: through next week AC circuits Next week: no lecture, no labs, no
More informationLecture Sound Waves EM Waves. Physics Help Q&A: tutor.leiacademy.org. The Doppler Effect 11/11/2014
Lecture 1102 Sound Waves EM Waves Physics Help Q&A: tutor.leiacademy.org The Doppler Effect The Doppler effect (or Doppler shift) is the change in frequency (or wavelength) of a wave for an observer moving
More informationPhysics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 301 Announcement Quiz 4 will be next week. The Final
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationPHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is
More informationLast Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,
Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.
More informationLouisiana State University Physics 2102, Exam 3 April 2nd, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More informationSelfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current.
Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit element called an
More informationINDUCTANCE Self Inductance
NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing
More informationChapter 30. Inductance
Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced
More informationREVIEW SESSION. Midterm 2
REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationChapter 32. Inductance
Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered selfinductance Unit of
More informationwe can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.
Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67
More informationAssessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)
NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement
More informationLecture 22. Inductance. Magnetic Field Energy.
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationCHAPTER 7 ELECTRODYNAMICS
CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,
More informationElectromagnetic Induction and Waves (Chapters 3334)
Electromagnetic nduction and Waves (Chapters 3334) The laws of emf induction: Faraday s and Lenz s laws Concepts of classical electromagnetism. Maxwell equations nductance Mutual inductance M Self inductance
More informationTransformers. slide 1
Transformers an alternating emf V1 through the primary coil causes an oscillating magnetic flux through the secondary coil and, hence, an induced emf V2. The induced emf of the secondary coil is delivered
More informationCOLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES
COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,
More informationMaxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law
Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar
More informationIntroduction to Electromagnetism
Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.
More informationElectromagnetic Induction (Chapters 3132)
Electromagnetic Induction (Chapters 313) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits
More informationAlternating Current Circuits. Home Work Solutions
Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationLecture 39. PHYC 161 Fall 2016
Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS  response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,
More informationElectromagnetic Field Theory (EMT) Lecture # 25
Electromagnetic Field Theory (EMT) Lecture # 25 1) Transformer and Motional EMFs 2) Displacement Current 3) Electromagnetic Wave Propagation Waves & Applications Time Varying Fields Until now, we have
More informationLecture 22. Inductance. Magnetic Field Energy.
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationVersion 001 CIRCUITS holland (1290) 1
Version CIRCUITS holland (9) This printout should have questions Multiplechoice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated
More informationMaxwell Equations: Electromagnetic Waves
Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy
More informationELECTROMAGNETIC WAVES WHAT IS LIGHT?
VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES WHAT IS LIGHT? James Clerk Maxwell (18311879), was a Scottish mathematician and theoretical physicist. He had an unquenchable curiosity
More informationDon t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms:
3/1/13 Chapter 25: EM Induction and EM Waves Key Terms: Induced Induced emf current Flux Lenz s Law waves Photons EM Don t Copy This Last chapter we learned that a current can create a magnetic field.
More informationVersion 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1
Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This printout should have 35 questions. Multiplechoice questions may continue on the next column or page find all choices before answering.
More informationElectromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.
Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R
More informationYell if you have any questions
Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored
More informationChapter 30. Inductance. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow
Chapter 30 Inductance PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 30 Looking forward at how a timevarying
More informationLecture 27: FRI 20 MAR
Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect
More informationChapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.
Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s
More informationPES 1120 Spring 2014, Spendier Lecture 38/Page 1
PES 1120 Spring 2014, Spendier Lecture 38/Page 1 Today: Start last chapter 32  Maxwell s Equations James Clerk Maxwell (18311879) Scottish mathematical physicist. He united all observations, experiments
More informationPhysics 208, Spring 2016 Exam #3
Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More informationELECTROMAGNETIC FIELD
UNITIII INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by
More informationChapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.
Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the
More informationLouisiana State University Physics 2102, Exam 3, November 11, 2010.
Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and
More informationChapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.
Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s
More informationUNITIII Maxwell's equations (Time varying fields)
UNITIII Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word
More informationcancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.
PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field
More information2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.
2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 211 What Is Physics? 212
More informationInductance, RL Circuits, LC Circuits, RLC Circuits
Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance
More informationChapter 32. Inductance
Chapter 32 Inductance Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit
More informationYell if you have any questions
Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P361 Before Starting All of your grades should now be posted
More informationLast time. Ampere's Law Faraday s law
Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface
More informationGeneral Physics (PHY 2140)
General Physics (PHY 40) eminder: Exam this Wednesday 6/3 ecture 04 4 questions. Electricity and Magnetism nduced voltages and induction Selfnductance Circuits Energy in magnetic fields AC circuits and
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationProblem Solving 9: Displacement Current, Poynting Vector and Energy Flow
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow Section Table and Group Names Hand in one copy per group at the end
More informationLecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I
Physics 3 Jonathan Dowling Lecture 35: FRI 7 APR Electrical Oscillations, LC Circuits, Alternating Current I Nikolai Tesla What are we going to learn? A road map Electric charge è Electric force on other
More informationElectromagnetic Waves
Welcome Back to Physics 1308 Electromagnetic Waves James Clerk Maxwell 13 June 1831 5 November 1879 Announcements Assignments for Tuesday, November 13th:  Reading: Chapter 33.533.6  Watch Videos: 
More informationYell if you have any questions
Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P361 efore Starting All of your grades should now be posted
More informationSelfInductance. Φ i. Selfinduction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 111
Lecture  SelfInductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again
More informationFerromagnetism. we saw that with the propane torch on Thursday
Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 46 PM Tues 123 PM Wed 69 PM Fri 10 AMnoon l LONCAPA #7 due Oct. 25 l Final Exam Tuesday Dec 11 7:459:45 AM Ferromagnetism l What makes
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More informationPHYS 241 EXAM #2 November 9, 2006
1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages
More informationInductors Maxwell s equations
Lecture 19 Chapter 34 Physics II Inductors Maxwell s equations Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Inductors Inductors (solenoids) store potential energy in a form
More informationElectromagnetic Induction
Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current
More informationDescribe the forces and torques exerted on an electric dipole in a field.
Learning Outcomes  PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationInductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationChapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1
Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and
More informationPRACTICE EXAM 1 for Midterm 2
PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness
More informationDC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy
DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the
More informationK204: FARADAY'S EXPERIMENT  EME K243: LENZ'S LAW  PERMANENT MAGNET AND COILS
K204: FARADAY'S EXPERIMENT  EME SET  20, 40, 80 TURN COILS K262: CAN SMASHER  ELECTROMAGNETIC K243: LENZ'S LAW  PERMANENT MAGNET AND COILS K244: EDDY CURRENT PENDULUM K406: MAGNETOELECTRIC GENERATOR
More informationFundamentals of Engineering Exam Review Electromagnetic Physics
Dr. Gregory J. Mazzaro Spring 2018 Fundamentals of Engineering Exam Review Electromagnetic Physics (currently 57% of FE exam) THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston,
More informationPhysics 116. Oct 18, Lecture 12 Electromagnetic waves. R. J. Wilkes
Physics 116 Lecture 12 Electromagnetic waves Oct 18, 2011 R. J. Wilkes Email: ph116@u.washington.edu Announcements Exam 1 scores will be posted on WebAssign today Will also appear on Catalyst Gradebook
More informationMagnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned
Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying
More informationActive Figure 32.3 (SLIDESHOW MODE ONLY)
RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor
More informationPhysics 1502: Lecture 25 Today s Agenda
Physics 1502: Lecture 25 Today s Agenda Announcements: Midterm 2: NOT Nov. 6 Following week Homework 07: due Friday net week AC current esonances Electromagnetic Waves Mawell s Equations  evised Energy
More informationExam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field
Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationPhysics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:
Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be
More informationAP Physics C. Inductance. Free Response Problems
AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through
More informationSCS 139 Applied Physic II Semester 2/2011
SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 1015 N force on an electron moving at 2.1
More informationExam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014
Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal
More information