Physics / Higher Physics 1A. Electricity and Magnetism Revision


 Lewis Stevenson
 4 years ago
 Views:
Transcription
1 Physics / Higher Physics 1A Electricity and Magnetism Revision
2 Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract
3 Coulomb s Law In vector form, F 12 k e q 1 q 2 r ˆ is a unit vector r 2 ˆ r directed from q 1 to q 2 Like charges produce a repulsive force between them
4 The Superposition Principle The resultant force on q 1 is the vector sum of all the forces exerted on it by other charges: F 1 = F 21 + F 31 + F 41 +
5 Electric Field Continuous charge distribution 2 ˆ e e o q k q r F E r ˆ ˆ lim i i e i e q i i q d q k k r r E r r
6 Electric Field Lines Dipole The charges are equal and opposite The number of field lines leaving the positive charge equals the number of lines terminating on the negative charge
7 Electric Flux E E i A i cos i E i A i lim E A d E i i A 0 i E A s u r f a c e
8 Gauss s Law E E d A q in q in is the net charge inside the surface E represents the electric field at any point on the surface 0
9 Field Due to a Plane of Charge The total charge in the surface is σa Applying Gauss s law E 2 EA A, and E Field uniform everywhere
10 Properties of a Conductor in Electrostatic Equilibrium 1. Electric field is zero everywhere inside conductor 2. Charge resides on its surface of isolated conductor 3. Electric field just outside a charged conductor is perpendicular to the surface with magnitude σ/ε o 4. On an irregularly shaped conductor surface charge density is greatest where radius of curvature is smallest
11 Electric Potential Energy Work done by electric field is F. ds = q o E. ds Potential energy of the chargefield system is changed by ΔU = q o E. ds For a finite displacement of the charge from A to B, the change in potential energy is U U U q E d s B A o B A
12 Electric Potential, V The potential energy per unit charge, U/q o, is the electric potential U B V E A q o d s The work performed on the charge is W = ΔU = q ΔV In a uniform field B A B V V V E d s E d s E d A B A
13 Equipotential Surface Any surface consisting of a continuous distribution of points having the same electric potential For a point charge V k e q r
14 Finding E From V From V = E.ds = E x dx E x dv dx Along an equipotential surfaces V = 0 Hence E ds i.e. an equipotential surface is perpendicular to the electric field lines passing through it
15 V Due to a Charged Conductor E ds = 0 So, potential difference between A and B is zero Electric field is zero inside the conductor So, electric potential constant everywhere inside conductor and equal to value at the surface
16 Cavity in a Conductor Assume an irregularly shaped cavity is inside a conductor Assume no charges are inside the cavity The electric field inside the conductor must be zero
17 Definition of Capacitance The capacitance, C, is ratio of the charge on either conductor to the potential difference between the conductors C Q V A measure of the ability to store charge The SI unit of capacitance is the farad (F)
18 Capacitance Parallel Plates Charge density σ = Q/A Electric field E = / 0 (for conductor) Uniform between plates, zero elsewhere C Q V Q Ed Q Q 0 A d 0 A d
19 Capacitors in Parallel Capacitors can be replaced with one capacitor with a capacitance of C eq C eq = C 1 + C 2
20 Capacitors in Series Potential differences add up to the battery voltage Q Q 1 Q 2 V V 1 V 2 V Q V 1 Q 1 V 2 Q 2 1 C 1 C 1 1 C 2
21 Energy of Capacitor Work done in charging the capacitor appears as electric potential energy U: 2 U Q 1 Q V 1 C ( V ) 2 C 2 2 Energy is stored in the electric field Energy density (energy per unit volume) u E = U/Vol. = ½ o E 2 2
22 Capacitors with Dielectrics A dielectric is a nonconducting material that, when placed between the plates of a capacitor, increases the capacitance For a parallelplate capacitor C = κc o = κε o (A/d)
23 Rewiring charged capacitors Two capacitors, C 1 & C 2 charged to same potential difference, V i. Capacitors removed from battery and plates connected with opposite polarity. Switches S 1 & S 2 then closed. What is final potential difference, V f?
24 Q 1i, Q 2i before; Q 1f, Q 2f after. Q 1i = C 1 V i ; Q 2i = C 2 V i So Q=Q 1i +Q 2i =(C 1 C 2 )V i But Q= Q 1f +Q 2f (charge conserved) With Q 1f = C 1 V f ; Q 2f = C 2 V f hence Q 1f = C 1 /C 2 Q 2f So, Q=(C 1 /C 2 +1) Q 2f With some algebra, find Q 1f = QC 1 /(C 1 +C 2 ) & Q 2f = QC 2 /(C 1 +C 2 ) So V 1f = Q 1f / C 1 = Q / (C 1 +C 2 ) & V 2f = Q 2f / C 2 = Q / (C 1 +C 2 ) i.e. V 1f = V 2f = V f, as expected So V f = (C 1  C 2 ) / (C 1 + C 2 ) V i, on substituting for Q
25 Magnetic Poles Every magnet has two poles Called north and south poles Poles exert forces on one another Like poles repel NN or SS Unlike poles attract NS
26 Magnetic Field Lines for a Bar Magnet Compass can be used to trace the field lines The lines outside the magnet point from the North pole to the South pole
27 Direction F B perpendicular to plane formed by v & B Oppositely directed forces are exerted on charges of different signs cause the particles to move in opposite directions
28 Direction given by RightHand Rule Fingers point in the direction of v (for positive charge; opposite direction if negative) Curl fingers in the direction of B Then thumb points in the direction of v x B; i.e. the direction of F B
29 The Magnitude of F The magnitude of the magnetic force on a charged particle is F B = q vb sin is the angle between v and B F B is zero when v and B are parallel F B is a maximum when perpendicular
30 Force on a Wire F = I L x B L is a vector that points in the direction of the current (i.e. of v D ) Magnitude is the length L of the segment I is the current = nqav D B is the magnetic field
31 Force on a Wire of Arbitrary Shape The force exerted segment ds is F = I ds x B The total force is a b F I d s B
32 Force on Charged Particle Equating the magnetic & centripetal forces: F qvb mv 2 Solving gives r = mv/qb r
33 BiotSavart Law db is the field created by the current in the length segment ds Sum up contributions from all current elements I.ds B 0 4 I d s ˆ r r 2
34 B for a Long, Straight Conductor B 0 I 2 a
35 B for a Long, Straight Conductor, Direction Magnetic field lines are circles concentric with the wire Field lines lie in planes perpendicular to to wire Magnitude of B is constant on any circle of radius a The righthand rule for determining the direction of B is shown Grasp wire with thumb in direction of current. Fingers wrap in direction of B.
36 Magnetic Force Between Two Parallel Conductors F 1 0 I 1 I 2 2 a l Parallel conductors carrying currents in the same direction attract each other Parallel conductors carrying currents in opposite directions repel each other
37 Definition of the Ampere The force between two parallel wires can be used to define the ampere F 1 l 0 I 1 I 2 2 a with T m A 1 When the magnitude of the force per unit length between two long parallel wires that carry identical currents and are separated by 1 m is 2 x 107 N/m, the current in each wire is defined to be 1 A
38 Ampere s Law The line integral of B. ds around any closed path equals o I, where I is the total steady current passing through any surface bounded by the closed path. B ds 0 I
39 Field in interior of a Solenoid Apply Ampere s law The side of length l inside the solenoid contributes to the field Path 1 in the diagram B d s B d s B path 1 path 1 ds B B 0 N l I 0 ni
40 Ampere s vs. Gauss s Law B ds 0 I E da q 0 Integrals around closed path vs. closed surface. i.e. 2D vs. 3D geometrical figures Integrals related to fundamental constant x source of the field. Concept of Flux the flow of field lines through a surface.
41 Gauss Law in Magnetism Magnetic fields do not begin or end at any point i.e. they form closed loops, with the number of lines entering a surface equaling the number of lines leaving that surface Gauss law in magnetism says: B B.d A 0
42 Faraday s Law of Induction The emf induced in a circuit is directly proportional to the rate of change of the magnetic flux through that circuit N d B dt QuickTime and a Cinepak decompressor are needed to see this picture.
43 Ways of Inducing an emf d dt BA cos Magnitude of B can change with time Area enclosed, A, can change with time Angle can change with time Any combination of the above can occur
44 Motional emf Motional emf induced in a conductor moving through a constant magnetic field Electrons in conductor experience a force, F B = qv x B that is directed along l In equilibrium, qe = qvb or E = vb
45 Sliding Conducting Bar Magnetic flux is The induced emf is d B dt Thus the current is d dt B Blx Blx Bl dx dt Blv I R Blv R
46 Induced emf & Electric Fields A changing magnetic flux induces an emf and a current in a conducting loop An electric field is created in a conductor by a changing magnetic flux Faraday s law can be written in a general form: E.ds d B dt Not an electrostatic field because the line integral of E. ds is not zero.
47 Generators Electric generators take in energy by work and transfer it out by electrical transmission The AC generator consists of a loop of wire rotated by some external means in a magnetic field
48 Rotating Loop Assume a loop with N turns, all of the same area, rotating in a magnetic field The flux through one loop at any time t is: B = BA cos = BA cos wt N d B dt NAB d dt cos w t NAB w sin w t
49 Motors Motors are devices into which energy is transferred by electrical transmission while energy is transferred out by work A motor is a generator operating in reverse A current is supplied to the coil by a battery and the torque acting on the currentcarrying coil causes it to rotate
50 Eddy Currents Circulating currents called eddy currents are induced in bulk pieces of metal moving through a magnetic field From Lenz s law, their direction is to oppose the change that causes them. The eddy currents are in opposite directions as the plate enters or leaves the field
51 Equations for SelfInductance Induced emf proportional to the rate of change of the current L L di dt L is a constant of proportionality called the inductance of the coil.
52 Inductance of a Solenoid Uniformly wound solenoid having N turns and length l. Then we have: N B 0 ni 0 I l NA B BA 0 l I L N B I 0 N 2 A l
53 Energy in a Magnetic Field Rate at which the energy is stored is d U d I L I d t d t I U L IdI 1 2 LI 2 0 Magnetic energy density, u B, is u B U Al B 2 2 0
54 RL Circuit I R 1 e Rt L R 1 e t t Time constant, tl / R, for the circuit t is the time required for current to reach 63.2% of its max value
n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A
Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationChapter 30. Sources of the Magnetic Field Amperes and BiotSavart Laws
Chapter 30 Sources of the Magnetic Field Amperes and BiotSavart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity
More informationElectrics. Electromagnetism
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationWhere k = 1. The electric field produced by a point charge is given by
Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.
More informationMagnetism is associated with charges in motion (currents):
Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an
More informationMagnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned
Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying
More informationPhysics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)
Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires BiotSavart Law Examples: ring,
More informationChapter 24. Magnetic Fields
Chapter 24 Magnetic Fields 1 Magnetic Poles Every magnet, regardless of its shape, has two poles Called north and south poles Poles exert forces on one another Similar to the way electric charges exert
More informationLouisiana State University Physics 2102, Exam 3 April 2nd, 2009.
PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),
More informationCHAPTER 29: ELECTROMAGNETIC INDUCTION
CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric
More informationLecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field
Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the Bfield.
More informationChapter 22, Magnetism. Magnets
Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles
More informationSUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.
SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,
More informationMagnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics
Magnetostatics III Magnetization All magnetic phenomena are due to motion of the electric charges present in that material. A piece of magnetic material on an atomic scale have tiny currents due to electrons
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationMansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance
Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First SixWeeks Second SixWeeks Third SixWeeks Lab safety Lab practices and ethical practices Math and Calculus
More informationCalculus Relationships in AP Physics C: Electricity and Magnetism
C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter
More informationr where the electric constant
1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive
More informationAP Physics C Mechanics Objectives
AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph
More informationName: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.
ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across
More informationChapter 21. Magnetism
Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar
More informationPhysics Will Farmer. May 5, Physics 1120 Contents 2
Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................
More informationQuestions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω
Questions 441 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationChapter 1 The Electric Force
Chapter 1 The Electric Force 1. Properties of the Electric Charges 1 There are two kinds of the electric charges in the nature, which are positive and negative charges.  The charges of opposite sign
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/
More informationPhysics 2020 Exam 2 Constants and Formulae
Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67
More informationElectromagnetics in Medical Physics
Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar
More informationAP Physics C. Electricity  Term 3
AP Physics C Electricity  Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the
More informationElectric Field of a uniformly Charged Thin Spherical Shell
Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the
More informationCh 30  Sources of Magnetic Field
Ch 30  Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)
More informationr where the electric constant
0. Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, grounding and charge conservation. b) Describe the motion of point charges when
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationGravity Electromagnetism Weak Strong
19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N
More information8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the
General Physics II Exam 2  Chs. 18B 21  Circuits, Magnetism, EM Induction  Oct. 3, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results
More informationChapter 30 Sources of the magnetic field
Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? BiotSavart Law SetUp The magnetic field is
More informationTorque on a Current Loop
Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?
More informationLecture 10 Induction and Inductance Ch. 30
Lecture 10 Induction and Inductance Ch. 30 Cartoon  Faraday Induction Opening Demo  Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR
More informationCHAPTER 20 Magnetism
CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic
More informationMagnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.
Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law AmpereMaxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v
More informationGeneral Physics II. Electromagnetic Induction and Electromagnetic Waves
General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field
More informationr r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.
MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and
More informationSlide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger
Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic
More informationPhysics 112. Study Notes for Exam II
Chapter 20 Electric Forces and Fields Physics 112 Study Notes for Exam II 4. Electric Field Fields of + and point charges 5. Both fields and forces obey (vector) superposition Example 20.5; Figure 20.29
More informationPHYS ND semester Dr. Nadyah Alanazi. Lecture 16
1 PHYS 104 2 ND semester 14391440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a CurrentCarrying Conductor 29.4 Motion of a
More informationChapter 5. Electromagnetic Induction
Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field
More informationChapter 5: Electromagnetic Induction
Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,
More informationHandout 8: Sources of magnetic field. Magnetic field of moving charge
1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationIII.Sources of Magnetic Fields  Ampere s Law  solenoids
Magnetism I. Magnetic Field  units, poles  effect on charge II. Magnetic Force on Current  parallel currents, motors III.Sources of Magnetic Fields  Ampere s Law  solenoids IV.Magnetic Induction 
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationPhysics 208, Spring 2016 Exam #3
Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More informationGood Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A
Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A The correct solution process is the right answer Do you know all the following? Circuits Current, Voltage,
More informationMagnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves. Reading Journals for Tuesday from table(s)
PHYS 2015  Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, EM waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS
More informationFaraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents
Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!
More informationMagnetism. and its applications
Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3  Magnetic force, either attractive or repelling varies
More informationChapter 9 FARADAY'S LAW Recommended Problems:
Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want
More informationPHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism
PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law  GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed
More informationb) (4) How large is the current through the 2.00 Ω resistor, and in which direction?
General Physics II Exam 2  Chs. 19 21  Circuits, Magnetism, EM Induction  Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationEXAM 3: SOLUTIONS. B = B. A 2 = BA 2 cos 0 o = BA 2. =Φ(2) B A 2 = A 1 cos 60 o = A 1 2 =0.5m2
EXAM : S Q.The normal to a certain m area makes an angle of 6 o with a uniform magnetic field. The magnetic flux through this area is the same as the flux through a second area that is perpendicular to
More informationChapter 2 Basics of Electricity and Magnetism
Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a
More informationElectricity & Magnetism
Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B
More informationLast time. Ampere's Law Faraday s law
Last time Ampere's Law Faraday s law 1 Faraday s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to the rate at which the magnetic flux through the surface
More informationLast time. Gauss' Law: Examples (Ampere's Law)
Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iotsavart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field
More informationKey Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect
Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment BiotSavart law Ampere s law The magnetic dipole field What is a
More informationMagnetic Fields Permanent Magnets
1 Magnetic Fields Permanent Magnets Magnetic fields are continuous loops leaving a North pole and entering a South pole they point in direction that an isolated North would move Highest strength near poles
More informationLecture 27: MON 26 OCT Magnetic Fields Due to Currents II
Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II JeanBaptiste Biot (17741862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a CurrentCarrying
More informationDHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY
DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY
More informationGen. Phys. II Exam 2  Chs. 21,22,23  Circuits, Magnetism, EM Induction Mar. 5, 2018
Gen. Phys. II Exam 2  Chs. 21,22,23  Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct
More informationMagnetic Fields and Forces
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges
More informationMarch 11. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  32 Summary Magnetic
More informationIntroduction to Electromagnetism
Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.
More informationChapter 29. Magnetic Fields
Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a CurrentCarrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications
More informationMagnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics
Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single
More informationCHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.
CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic
More informationPhysics 182. Assignment 4
Physics 182 Assignment 4 1. A dipole (electric or magnetic) in a nonuniform field will in general experience a net force. The electric case was the subject of a problem on the midterm exam; here we examine
More informationChapter 17 & 18. Electric Field and Electric Potential
Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object
More informationDescribe the forces and torques exerted on an electric dipole in a field.
Learning Outcomes  PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the
More informationMagnetic Forces and Fields (Chapters 2930)
Magnetic Forces and Fields (Chapters 2930) Magnetism Magnetic Materials and Sources Magnetic Field, Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic
More informationCh. 28: Sources of Magnetic Fields
Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 2414 BiotSavart Law Current produces a magnetic field The BiotSavart
More informationPHY102 Electricity Course Summary
TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional
More informationHomework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.
Homework Reading: Chap. 29, Chap. 31 and Chap. 32 Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.32 Problems: 29.49, 29.51, 29.52, 29.57, 29.58, 29.59, 29.63,
More informationElectromagnetic Induction
Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward
More informationPHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University
PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq
More informationPhysics for Scientists and Engineers 4th Edition 2017
A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle
More informationElectric Potential Energy Conservative Force
Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,
More informationUNIT I ELECTROSTATIC FIELDS
UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.
More informationChapter 30. Sources of the Magnetic Field
Chapter 30 Sources of the Magnetic Field CHAPTER OUTLNE 30.1 The Biot Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère s Law 30.4 The Magnetic Field of a Solenoid 30.5 Magnetic
More information