Magnets and Electromagnetism

Size: px
Start display at page:

Download "Magnets and Electromagnetism"

Transcription

1 Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire carries a current and is perpendicular to a 0.75 T magnetic field. If the force on the wire is 1.8 N, what is the current in the wire? 3. A 0.5 cm length of wire carries a 26 A current to your right in a 0.75 T magnetic field directed up. a. What is the direction of the force on the wire? b. What is the magnitude of the force on the wire? 4. A 4.5 m length of wire carries a 2.1 A current and is perpendicular to a magnetic field. If the wire experiences a force of 3.8 N from the magnetic field, what is the magnitude of the 5. A length of wire carrying a current of 2 A is perpendicular to a 6.5 T magnetic field. What is the length of the wire if it experiences a force of 2.99 N? 6. An electron beam is perpendicular to a 0.02 T magnetic field. What is the force experienced by one electron if the beam has a velocity of m/s? 7. A moving proton experiences a force of N when it travels at a right angle to a 1.35 T magnetic field. What is the velocity of the proton? 8. A doubly ionized particle travels upward with a speed of m/s through a magnetic field with a strength of 1.5 T to the east. What is the force experienced by the particle? 9. An electron traveling m/s at a right angle to a magnetic field experiences a force of N. What is the strength of the 10. A positively charged particle travels at a right angle through a 3 T magnetic field with a velocity of m/s. If the par- ticle experiences a force of N as it travels through the magnetic field, what is the charge on the particle? 11. A screen of ten straight wires is laid horizontally in an upward magnetic field of 24 T. Each wire carries a current of 12 ma and is 50 cm long. a. What is the total force experienced by this screen? b. If the force acts to the east what is the direction of the current? 12. A 15-cm length of wire is suspended horizontally in a magnetic field of 8 T oriented at a right angle to the wire in such a way that the force experienced by this wire acts in the upward direction. a. If the wire has a mass of 3 g and is able to move freely, what current running through this wire is necessary to lift the wire off the ground? b. If this wire is turned 90 so that the direction of the current lines up with the magnetic field, what happens to the force? 13. A square loop of current carrying wire is placed horizontally in a magnetic field that also is oriented horizontally. Sketch the layout and describe the forces on each segment of wire and the resulting force or motion if the wire is able to move freely. 14. An electron passes through a northward magnetic field of 0.40 T. It is determined that the electron experiences an upward force of N. a. What is the velocity (magnitude and direction) of the electron? b. What force would a neutron experience under these same conditions? 1

2 15. The speed of charged subatomic particles may be calculated by measuring their curved orbits due to centripetal forces when passing through a strong magnetic field. If a proton circles in an orbit of 3.1 cm within a magnetic field of 8 T, how fast is this proton moving? 16. How strong and in what direction would a magnetic field have to be to offset the force of gravity acting on an electron traveling at a speed of m/s to the north? 17. A 21 cm length of wire moves perpendicular to a 2.45 T magnetic field at 3.5 m/s. a. What is the magnitude of the EMF induced in the wire? b. The wire is part of a circuit with a total resistance of 3 Ω. What is the current through the wire? 18. An induced EMF of V is induced in a 5 cm wire when it is moved perpendicular to a magnetic field at 2.1 m/s. What is the magnitude of the 19. An unknown length of wire moves perpendicular to a 3.4 T magnetic field with a velocity of 12 m/s. If the induced EMF is 49 V, what is the length of the wire? 20. A straight wire that is oriented east-west is 28 cm long moves northward through a downward magnetic field of 2 T at a constant speed of 3.25 m/s. If the wire is 0.3 Ω, what is the magnitude and direction of the induced current in the wire? 21. Electrons moving at a speed of m/s travel undeflected through crossed electric and magnetic fields. If the strength of the electric field is N/C, what is the strength of the magnetic field? 22. A wire carries a current of 6 A. The wire is at right angles to a uniform magnetic field, and 0.8 m of the wire is in the field. The force on the wire is 0.62 N. What is the strength of the 23. A wire is at right angles to a uniform magnetic field with magnetic induction of 0.4 T. The current through the wire is 4 A. What is the force that acts on the wire when 60 cm is in the field? 24. A wire carries a current of 12 A. The wire is at right angles to a uniform magnetic field that exerts a force of 0.5 N on the wire when 2 m of the wire is in the field. What is the strength of the magnetic field? 25. A wire is at right angles to a magnetic field that exerts a force of 2.4 N on the wire. A current of 8.6 A flows through the wire. The induction of the magnetic field is 0.66 T. What length of wire is in the field? 26. A high-speed electron travels at right angles to a magnetic field that has an induction of 0.42 T. The electron is traveling at m/s. What is the force acting on the electron? 27. A straight wire that is 0.42 m long has a constant speed of 12 m/s perpendicular to a magnetic field that has a strength of T. a. What is the induced EMF in the wire? b. If the wire is part of a circuit that has a resistance of 2.25 Ω, what is the current through the wire? 28. A 25.5 m wire moves perpendicular to a magnetic field of T at a speed of 14.4 m/s. What EMF is induced in the wire? 29. The current carried through a wire is 13.4 ma. The wire is connected across a circuit with 5.5 Ω of resistance. If 1.12 m of the wire is moving perpendicularly through a magnetic field of 0.25 T, then what is the velocity of the wire? 30. A proton moving at a speed of m/s enters a magnetic field with a strength of 1.2 T and moves in a circle. What is the radius of the proton s path? 2

3 1 F = ILB ( 0.012$m) ( 2.4$T) F = 0.8$A F = 0.023$N 2 F = ILB 3a 3b I = F LB 1.8$N I = ( 0.24$m) 0.75$T I = 10$A The force is directed toward you. F = ILB ( 0.005#m) ( 0.75#T) F = 26#A F = 0.098#N 4 F = ILB 8 F = qvb 9 F = qvb ( 4.1" "10 4 "m/s)( 1.5"T) F = 2" "1.602" "10 19 "C F = 2.0" "10 14 "N The direction of the force is north. F qv 10 F = qvb 2.9$ $10 11 $N ( 1.602$ $10 19 $C) 8.6$ $10 7 $m/s 2.1$T q = F vb 4.32% %10 13 %N q = ( 4.5% %10 5 %m/s) 3%T q = 3.2% %10 19 %C%=%2e 5 F = ILB 6 F = qvb F LI 3.8$N ( 4.5$m) 2.1$A 0.40$T F IB 2.99$N ( 2$A) 6.5$T 0.23$m 7 F = qvb ( 9.8& &10 3 &m/s)( 0.02&T) F = 1.602& &10 19 &C F = 3.1& &10 17 &N v = F 6.9$ $10 13 $N v = ( 1.602$ $10 19 $C) 1.35$T v = 3.1$ $10 6 $m/s 11a 11b 12a 12b 13 F = ILB ( 0.5%m) ( 24%T) F = 0.012%A F = 0.144%N The net force will be 1.44 N The direction of the force is to the north. F g mg = ILB I = mg LB ( 9.8$m/s ) 2 ( 8$T) I = 0.003$kg 0.15$m I = 0.024$A The force will become zero. 3

4 14a 14b F = qvb v = F 9" "10 12 "N v = ( 1.602" "10 19 "C) 0.40"T v = 1.4" "10 8 "m/s The force is directed to the west. A neutron would experience no force. 15 F c mv 2 = qvb r v = r m ( 8&T) ( 0.031&m) v = 1.602& &10 19 &C 1.67& &10 27 &kg v = 2.4& &10 7 &m/s 16 F g mg = qvb 17a 17b mg qv ( 9.11$ $10 31 $kg) 9.8$m/s $ $10 19 $C ( 9.5$ $10 7 $m/s) 5.9$ $10 19 $T The field needs to point to the east. EMF = BLv ( 0.21%m) ( 3.5%m/s) EMF = 2.45%T EMF = 1.8%V I = 1.8$V 3$Ω I = 0.6$A 18 EMF = BLv EMF Lv 0.089%V ( 0.05%m) 2.1%m/s 0.85%T 19 EMF = BLv 20 EMF Bv 49#V ( 3.4#T) 12#m/s 1.2#m I = BLv R ( I = 2"T )( 0.28"m) ( 3.25"m/s) I = 6.1"A 0.3"Ω The current flows to the west. 21 F E Eq = qvb E v 22 F = ILB 23 F = ILB 4.2$ $103 $N/C 1.8$ $10 6 $m/s $T F LI 0.62%N ( 0.8%m) 6%A 0.13%T F = 4"A ( 0.6"m) ( 0.4"T) F = 0.96"N 4

5 24 F = ILB 25 F = ILB 26 F = qvb 27a F LI 0.5$N ( 2$m) 12$A 0.021$T F IB 2.4$N ( 8.6$A) 0.66$T 0.42$m ( 3.46& &10 7 &m/s)( 0.42&T) F = 1.602& &10 19 &C F = 2.3& &10 12 &N EMF = BLv ( 0.42$m) ( 12$m/s) EMF = 0.05$T EMF = 0.25$V 29 I = BLv R v = IR BL ( 5.5&Ω) ( 1.12&m) v = &A 0.25&T v = 0.26&m/s 30 F c mv 2 = qvb r r = mv ( 2& &10 5 &m/s) ( 1.2&T) r = 1.67& &10 27 &kg 1.602& &10 19 &C r = &m 27b I = 0.25%V 2.25%Ω I = 0.11%A 28 EMF = BLv ( 25.5$m) ( 14.4$m/s) EMF = 4.42$ $10 4 $T EMF = 0.16$V 5

Unit 8: Electromagnetism

Unit 8: Electromagnetism Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic

More information

Magnetism Chapter Questions

Magnetism Chapter Questions Magnetism Chapter Questions 1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces? 2. A Magnet has a north and a south

More information

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets. Chapter Problems Magnetic Fields 1. Draw the Magnetic Field lines created by the below bar magnet. S N 2. Draw the Magnetic Field lines created by the below two bar magnets S N N S 3. Draw the Magnetic

More information

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81)

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81) Chapter 27 : Magnetism (version 1) Key concepts: Cross product: A B produces a vector that is perpendicular to the plane formed by A and B, in a direction that can be determined via the right-hand rule

More information

Answer Key. Chapter 23. c. What is the current through each resistor?

Answer Key. Chapter 23. c. What is the current through each resistor? Chapter 23. Three 2.0- resistors are connected in series to a 50.0- power source. a. What is the equivalent resistance of the circuit? R R R 2 R 3 2.0 2.0 2.0 36.0 b. What is the current in the circuit?

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Discussion Question 7A P212, Week 7 RC Circuits

Discussion Question 7A P212, Week 7 RC Circuits Discussion Question 7A P1, Week 7 RC Circuits The circuit shown initially has the acitor uncharged, and the switch connected to neither terminal. At time t = 0, the switch is thrown to position a. C a

More information

Chapter 24: Magnetic Fields & Forces Questions & Problems

Chapter 24: Magnetic Fields & Forces Questions & Problems Chapter 24: Magnetic Fields & Forces Questions & Problems N mv Bwire = Bloop = Bsolenoid = FB = q vbsin α FB = q vb = 2πr 2r L r LII 1 2 Fwire = ILBsinα F parallelwires = = 4π 1 T m/a 2 Example 23.1 A

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

Physics 12 January 2001 Provincial Examination

Physics 12 January 2001 Provincial Examination Physics 12 January 2001 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

Force Due to Magnetic Field You will use

Force Due to Magnetic Field You will use Force Due to Magnetic Field You will use Units: 1 N = 1C(m/s) (T) A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000

More information

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009---------------------------------------------------------------------------------------------------------------------------------

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Exam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014

Exam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

PHYSICS 12 NAME: Magnetic Field and Force

PHYSICS 12 NAME: Magnetic Field and Force NAME: Magnetic Field and Force 1. An aircraft whose wingspan is 15 m carries a static charge of 0.60 C. It travels at 240 m/s perpendicular to a 1.5x10-4 T magnetic field. What magnetic force does the

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0 Communication includes statement of the physics concept used and how it is applied in the situation along with diagrams, word explanations and calculations in a well laid out formula, substitution, answer

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Other Formulae for Electromagnetism. Biot's Law Force on moving charges Other Formulae for Electromagnetism Biot's Law Force on moving charges 1 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor,

More information

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test PHYS 1102 EXAM - II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED

More information

Physics 12. June 1997 Provincial Examination

Physics 12. June 1997 Provincial Examination Physics 2 June 997 Provincial Examination ANSWER KEY / SCORING GUIDE TOPICS:. Kinematics and Dynamics 2. Energy and Momentum 3. Equilibrium 4. Circular Motion and Gravitation 5. Electrostatics and Circuitry

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

SECTION B Induction. 1. The rate of change of flux has which of the following units A) farads B) joules C) volts D) m/s E) webers

SECTION B Induction. 1. The rate of change of flux has which of the following units A) farads B) joules C) volts D) m/s E) webers SECTION B Induction 1. The rate of change of flux has which of the following units ) farads B) joules C) volts D) m/s E) webers 2. For the solenoids shown in the diagram (which are assumed to be close

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

Physics 231 Exam III Dec. 1, 2003

Physics 231 Exam III Dec. 1, 2003 Physics 231 Exam III Dec. 1, 2003 1. One night while asleep you find you are having a nightmare. You find that you are in the middle of the French revolution. Unfortunately you are being led up to the

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37

HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Fall 12 PHY 122 Homework Solutions #7 HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Chapter 26 Problem 34 Determine the magnitudes and directions of the currents in each resistor shown in

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 41 - Fields and Waves Consider a charge moving in a magnetic field B field into plane F=ma acceleration change of direction of velocity Take F as centripetal force: 0 F qvb cos90 qvb F Centripetal

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

Physics 2112 Unit 16

Physics 2112 Unit 16 Physics 2112 Unit 16 Concept: Motional EMF Unit 16, Slide 1 Your Comments Hopefully I will understand more after lecture. May be time to open the book. can we go over the conducting loop moving toward

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4 INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4 SECTION A CONCEPTUAL AND APPLICATION TYPE QUESTIONS 1

More information

Electrics. Electromagnetism

Electrics. Electromagnetism Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

St. Vincent College PH : General Physics II. Exam 5 4/8/2016

St. Vincent College PH : General Physics II. Exam 5 4/8/2016 St. Vincent College PH 112-01: General Physics II Exam 5 4/8/2016 The exam consists of 4 questions. The questions may not be worth the same number of points, so read the entire exam before beginning work.

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current LJPS Gurgaon 1. An electron beam projected along +X axis, experiences a force due to a magnetic field along +Y axis. What is the direction of the magnetic field? Class XII- Physics - Assignment Topic:

More information

SCS 139 Applied Physic II Semester 2/2011

SCS 139 Applied Physic II Semester 2/2011 SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 10-15 N force on an electron moving at 2.1

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question. ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Solve: From Example 33.5, the on-axis magnetic field of a current loop is

Solve: From Example 33.5, the on-axis magnetic field of a current loop is 33.10. Solve: From Example 33.5, the on-axis magnetic field of a current loop is B loop ( z) μ0 = We want to find the value of z such that B( z) B( 0) 0 0 3 = 3 ( z + R ) ( R ) =. 3 R R ( z R ) z R z R(

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsndMathsTutor.com 1 Q1. Which line, to, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field? (a) uniform

More information

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM)

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) name Write your name also in the back of the last page. blazer id [a] PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) You may not open the textbook nor notebook. A letter size information may be used. A

More information

Question Bank 4-Magnetic effects of current

Question Bank 4-Magnetic effects of current Question Bank 4-Magnetic effects of current LEVEL A 1 Mark Questions 1) State Biot-Savart s law in vector form. 2) What is the SI unit of magnetic flux density? 3) Define Tesla. 4) A compass placed near

More information

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case. Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A )

NAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A ) NAME: PHYSCS 6B SPRNG 2011 FNAL EXAM ( VERSON A ) Choose the best answer for each of the following multiple-choice questions. There is only one answer for each. Questions 1-2 are based on the following

More information

Physics 12 January 1998 Provincial Examination

Physics 12 January 1998 Provincial Examination Physics 12 January 1998 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2 Exam 2 Solutions Prof. Pradeep Kumar Prof. Paul Avery Mar. 21, 2012 1. A portable CD player does not have a power rating listed, but it has a label stating that it draws a maximum current of 159.0 ma.

More information

Electromagnetism IB 12

Electromagnetism IB 12 Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the

More information

SECTION A Magnetostatics

SECTION A Magnetostatics P Physics Multiple hoice Practice Magnetism and lectromagnetism NSWRS STION Magnetostatics Solution For the purposes of this solution guide. The following hand rules will be referred to. RHR means right

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

BROCK UNIVERSITY SOLUTIONS

BROCK UNIVERSITY SOLUTIONS BROCK UNIVERSITY Final Exam: April 2014 Number of pages: 11 (+ formula sheet) Course: PHYS 1P22/1P92 Number of students: 134 Examination date: 17 April 2014 Number of hours: 3 Time of Examination: 9:00

More information

D. To the right (Total 1 mark)

D. To the right (Total 1 mark) 1. An electron passes the north pole of a bar magnet as shown below. What is the direction of the magnetic force on the electron? A. Into the page B. Out of the page C. To the left D. To the right 2. A

More information

Physics 12 August 1998 Provincial Examination

Physics 12 August 1998 Provincial Examination Physics 12 August 1998 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

P ROBL E M S. 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11.

P ROBL E M S. 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11. 918 C HAPTER 29 Magnetic Fields 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11. s it possible to orient a current

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

Magnetism is associated with charges in motion (currents):

Magnetism is associated with charges in motion (currents): Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force

Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force Magnetism Magnets Source of magnetism Magnetic field Magnetic force Magnets and magnetic force Historical First magnets were pieces of iron-bearing rock called loadstone (magnetite, Fe 3 O 4 ) found originally

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Electrical Phenomena TUTORIAL 1 Coulomb's Inverse Square Law 1 A charge of 2.0 x 10-8 C is placed a distance of 2.0

More information

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework PHYSICS ADVANCED HIGHER Unit 3 Electromagnetism Homework 1 DATA SHEET COMMON PHYSICAL QUANTITIES Quantity Symbol Value Quantity Symbol Value Gravitational acceleration on Earth Radius of Earth Mass of

More information

Gravity Electromagnetism Weak Strong

Gravity Electromagnetism Weak Strong 19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

More information

Electric_Field_core_P1

Electric_Field_core_P1 Electric_Field_core_P1 1. [1 mark] An electron enters the region between two charged parallel plates initially moving parallel to the plates. The electromagnetic force acting on the electron A. causes

More information

PHY122 Physics for the Life Sciences II

PHY122 Physics for the Life Sciences II PHY122 Physics for the Life Sciences II Lecture 12 Faraday s Law of Induction Clicker Channel 41 03/12/2015 Lecture 12 1 03/12/2015 Magnetic Materials Like dielectric materials in electric fields, materials

More information

Advanced Higher Physics. Electromagnetism

Advanced Higher Physics. Electromagnetism Wallace Hall Academy Physics Department Advanced Higher Physics Electromagnetism Problems AH Physics: Electromagnetism 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

(D) Blv/R Counterclockwise

(D) Blv/R Counterclockwise 1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is

More information

Physics 4B. Question 28-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged)

Physics 4B. Question 28-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged) Physics 4B Solutions to Chapter 8 HW Chapter 8: Questions: 4, 6, 10 Problems: 4, 11, 17, 33, 36, 47, 49, 51, 60, 74 Question 8-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged)

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

CHAPTER 27 HOMEWORK SOLUTIONS

CHAPTER 27 HOMEWORK SOLUTIONS CHAPTER 7 HOMEWORK SOLUTIONS 7.1. IDENTIFY and SET UP: Apply Eq.(7.) to calculate F. Use the cross products of unit vectors from Section 1.10. EXECUTE: v 4.1910 4 m/siˆ 3.8510 4 m/s ˆj (a) B 1.40 Tˆ i

More information

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law - GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

Physics /09 Released Exam June 2009 Form A Provincial Examination Answer Key

Physics /09 Released Exam June 2009 Form A Provincial Examination Answer Key Physics 12 2008/09 Released Exam June 2009 Form A Provincial Examination Answer Key Cognitive Processes K = Knowledge U = Understanding H = Higher Mental Processes Weightings 10% 80% 10% Types 35 = Multiple

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

Physics 102: Magnetic Fields

Physics 102: Magnetic Fields Physics 102: Magnetic Fields Assist. Prof. Dr. Ali Övgün EMU Physics Department www.aovgun.com Electric Field & Magnetic Field Electric forces acting at a distance through electric field. Vector field,

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Magnetic Fields and Forces Electric fields are produced by static electric charges. Magnetic fields are produced by: A. Magnetic charges B. Electric Currents Only C. Magnets Only D. Both Magnets and Electric

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information