What to Add Next time you update?


 Lambert Sullivan
 3 years ago
 Views:
Transcription
1 What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review links for additional content Page 1 Copyright 2017
2 Production Parallel Circuits Page 2 Copyright 2017
3 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017
4 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright 2017
5 Remember, a Series Circuit Complete, Closed Circuit Single Path from +V to GND The same current is flowing in both resistors Yes, there is only one path for the current and it is the same at all points ion the circuit + GND SERIES CIRCUIT Page 5 Current Copyright 2017
6 Parallel Circuits Complete, Closed Circuit Multiple Paths from +V to GND Is the same current flowing in all paths? + GND Current 1 Current 2 No, there are multiple paths, so there is multiple currents. Each path can have different Current. PARALLEL CIRCUIT Page 6 Copyright 2017
7 Parallel Circuits A C Is the Voltage across A B the same as across C D? in all paths? + GND Current 1 Current 2 Yes, electrically, A C are the same point. B D are too Right? B PARALLEL CIRCUIT Page 7 D Copyright 2017
8 Parallel Circuits A C If R1 R2 were both 1KΩ then you really have two 1KΩ resistors as loads drawing current from the same power supply + GND R 1 R 2 Current 1 Current 2 If 2x the current is flowing, then what does that mean for the equivalent resistance? B PARALLEL CIRCUIT D Page 8 Copyright 2017
9 Go Get the following Power Supply the smaller ones are better Power to Breadboard Adaptor Breadboard About 6 wire 1 plastic cup Resistors: One 100Ω resistor Two 330Ω resistors One 680Ω resistor Two 1KΩ resistors One 2KΩ resistor Page 9 Copyright 2017
10 Production Lab Time Page 10 Copyright 2017
11 Log some data Open your log books On the next available Page Note the Date Draw a table ( for a fixed 5 volt power supply ) Parallel Circuit Measurements Measured Resistance Measured Voltage Measured Current R1 + R2 (measure in parallel) R1 = 1KΩ R2 = 1KΩ Page 11 Copyright 2017
12 Build this Parallels Circuit How do you measure each resistor in a Parallel circuit? How do you measure the total resistance, as seen by the power supply? R 1 = 1KΩ R 2 = 1KΩ A C R 1 R 2 B D Page 12 Copyright 2017
13 Measuring individual resistors in a Parallel Circuit To measure each resistor, you need to make sure you are measuring just the individual resistors A C B D Page 13 Copyright 2017
14 Build this Parallels Circuit A C + GND B D Page 14 Copyright 2017
15 Measuring individual resistance A C B D Page 15 Copyright 2017
16 Measuring Total Resistance A C B D Page 16 Copyright 2017
17 Measuring total voltage A C + GND B D Page 17 Copyright 2017
18 Measuring Individual Current A C + GND Open the current path to R1 B D Page 18 Copyright 2017
19 Measuring Individual Current A C + GND B D Page 19 Copyright 2017
20 Measuring total Current? A C + GND B D Page 20 Copyright 2017
21 Lab Repeat with more Resistor values Redo lab measurements with different R 1 R 2 R 1 = 100Ω R 2 = 330Ω R 1 = 100Ω R 2 = 1KΩ R 1 = 680Ω R 2 = 2KΩ Parallel Circuit Measurements Measured Resistance Measured Voltage Measure d Current R1 + R2 (measure in parallel) R1 = 100Ω R2 = 330Ω Page 21 Copyright 2017
22 Production Math behind the measurements Page 22 Copyright 2017
23 Parallel Circuits A C Is the Voltage across A B the same as across C D? in all paths? + GND Current 1 Current 2 The total resistance of parallel resistors is always less than the smallest individual resistor B PARALLEL CIRCUIT Page 23 D Copyright 2017
24 Calculating Parallel Resistors Add the Reciprocals of the individual Resistors to get the reciprocal or the total Resistance If you only have 2 resistors 1 R t = 1 R R R R n Page 24 Copyright 2017
25 Parallel Circuit Resistance R 1 = 330Ω, R 2 = 330Ω R t = R 1 = 330Ω, R 2 = 680Ω R t = A C R 1 = 1KΩ, R 2 = 2KΩ R t = R 1 R 2 R 1 = 6800Ω, R 2 = 1KΩ R t = Put in your Lab Book 1 R t = 1 R R R R n B Calculate R t Page 25 D Copyright 2017
26 Parallel Circuits A C E Vcc = 12v 1 R 1 = 4KΩ R 2 = 6KΩ R 3 = 12KΩ R t = 1 R R R R n + GND R 1 R 2 R 3 What is the total resistance? What is the current in each path? B D F PARALLEL CIRCUIT Page 26 Copyright 2017
27 Production Reference Page 27 Copyright 2017
28 Sources 30 years of electronics in my head Electronic Projects for Photographers add some of the hypothesis and Questions to the labs tlab/index.html < maybe add a lab to prove current is the same < good lab work sheet add to presentation Page 28 Copyright 2017
STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2
Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright
More informationOhm s Law and Electronic Circuits
Production Ohm s Law and Electronic Circuits Page 1  Cyber Security Class ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison Page 2  Cyber Security
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationParallel Circuits. Chapter
Chapter 5 Parallel Circuits Topics Covered in Chapter 5 51: The Applied Voltage V A Is the Same Across Parallel Branches 52: Each Branch I Equals V A / R 53: Kirchhoff s Current Law (KCL) 54: Resistance
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationDesigning a Thermostat Worksheet
Designing a Thermostat Worksheet Most of us have a thermostat in our homes to control heating and cooling systems of our home. These important devices help us save energy by automatically turning off energy
More informationEXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More informationPage 1 of 15 Page 2 of 15 Ohm s Law Basic Electricity Worksheet Topics Question 1 For a given amount of water pressure, which will flow a greater rate of water: a small (restrictive) nozzle or a large
More informationModule 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes
Module 1, Add on math lesson Simultaneous Equations 45 minutes eacher Purpose of this lesson his lesson is designed to be incorporated into Module 1, core lesson 4, in which students learn about potential
More informationSimple Resistive Circuits
German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in
More informationExercise 1: Thermistor Characteristics
Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor
More informationExperiment #6. Thevenin Equivalent Circuits and Power Transfer
Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn
More informationresistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )
DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify
More informationFig. 11 Current Flow in a Resistive load
1 Electric Circuits: Current flow in a resistive load flows either from () to () which is labeled below as Electron flow or the Conventional flow from () to (). We will use conventional flow in this
More informationPhysics Investigation 10 Teacher Manual
Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationJFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015
Nov. 4, 2007, rev. Nov. 12, 2015 These homework problems provide practice with analysis and design involving the most common type of JFET circuits. There is one problem for each type of circuit. Answers
More informationCalculate the total resistance of this combination. (3)
1 The circuit shows a combination of three resistors. 22 Ω 47 Ω 620 Ω Calculate the total resistance of this combination. Total resistance = (Total for Question = 3 marks) 2 (a) Sketch a graph to show
More informationmith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut
mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!
More informationLab 8 Simple Electric Circuits
Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking
More informationIn the following information, you will study these three physical quantities as they relate to simple electrical circuits.
Module 7 Ohm's Law INTRODUCTION In this experiment, you will study Ohm's Law, the most fundamental relation used in the analysis of electrical circuits. Ohm's Law relates the quantities of voltage, electric
More informationOhm's Law and Resistance
Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through
More informationLet V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.
Questions on Thevenin Equivalent Circuits Fall 2004 2. Thevenin Circuits (25 points) Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between
More informationDirect Current Circuits
Name: Date: PC1143 Physics III Direct Current Circuits 5 Laboratory Worksheet Part A: SingleLoop Circuits R 1 = I 0 = V 1 = R 2 = I 1 = V 2 = R 3 = I 2 = V 3 = R 12 = I 3 = V 12 = R 23 = V 23 = R 123
More informationChapter 19 Lecture Notes
Chapter 19 Lecture Notes Physics 2424  Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1e t/(rc) ] q = q 0 e t/(rc τ = RC
More informationDC motor / generator. Jeffrey A. Meunier
DC motor / generator Jeffrey A. Meunier jeffm@engr.uconn.edu Electric motor An electric motor is used to convert electrical energy into mechanical energy. Electric motor An electric motor is used to convert
More informationPC1222 Fundamentals of Physics II. Basic Circuits. Data Table 1
Name: Date: PC1222 Fundamentals of Physics II Basic Circuits 5 Laboratory Worksheet Part A: Ohm s Law and Resistances Resistance Colour Codes 1st 2nd 3rd 4th Resistance R (Ω) Current I (A) Voltage V (V)
More information8 TH GRADE MATHEMATICS:
8 TH GRADE MATHEMATICS: AIM: USING OHM S LAW TO SOLVE MATH PROBLEMS HOME WORK: HANDOUT BY MR. AKOMAH ENCHANCING STUDENTS SKILLS IN INVERESE OPERATION USING OHMS LAW : Students will 1.Become aware of Ohm's
More informationExperiment 2: Analysis and Measurement of Resistive Circuit Parameters
Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Report Due Inclass on Wed., Mar. 28, 2018 Prelab must be completed prior to lab. 1.0 PURPOSE To (i) verify Kirchhoff's laws experimentally;
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationThe Digital Multimeter (DMM)
The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),
More informationMeasurement of Electrical Resistance and Ohm s Law
Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationPHYS 2212L  Principles of Physics Laboratory II
PHYS 2212L  Principles of Physics Laboratory II Laboratory Advanced Sheet Resistors 1. Objectives. The objectives of this laboratory are a. to verify the linear dependence of resistance upon length of
More informationLab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory
Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.
More informationExercise 1: RC Time Constants
Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results
More informationIn this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents
In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,
More informationKirchhoff s laws. Figur 1 An electric network.
Kirchhoff s laws. Kirchhoff s laws are most central to the physical systems theory, in which modeling consists in putting simple building blocks together. The laws are commonly known within electric network
More informationFigure 1. In the following information, you will study these three physical quantities as they relate to simple electrical circuits.
Module 7 Ohm s Law INTRODUCTION In this experiment, you will study Ohm s Law, the most fundamental relation used in the analysis of electrical circuits. Ohm s Law relates the quantities of voltage, electric
More informationKirchhoff's Laws and Maximum Power Transfer
German Jordanian University (GJU) Electrical Circuits Laboratory Section Experiment Kirchhoff's Laws and Maximum Power Transfer Post lab Report Mahmood Hisham Shubbak / / 8 Objectives: To learn KVL and
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationVer 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2  Solutions
Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet  Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider NodeVoltage Analysis 3 Network Analysis
More informationExperiment 5 Voltage Divider Rule for Series Circuits
Experiment 5 Voltage Divider Rule for Series Circuits EL  DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student
More informationThe General Resistor Circuit Problem
The General Resistor Circuit Problem We re now ready to attack the general resistor circuit problem that may have many sources of EMF, many resistors, and many loops. Remember, the basic laws that we ll
More informationGrade 6 Math Circles. Circuits
Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with
More informationELECTRIC CIRCUITS. Checklist. Exam Questions
ELECTRIC CIRCUITS Checklist Make sure you can. State Ohm's law in words. Determine relationship between current, potential difference and resistance at constant temperature using a simple circuit Draw,
More informationExperiment 9 Equivalent Circuits
Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 36104 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,
More informationOutline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.
Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in
More informationElectric Circuits. June 12, 2013
Electric Circuits June 12, 2013 Definitions Coulomb is the SI unit for an electric charge. The symbol is "C". Electric Current ( I ) is the flow of electrons per unit time. It is measured in coulombs per
More informationDC Circuits Analysis
Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides
More informationReview. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,
More informationEE201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6) None of above
EE201, Review Probs Test 1 page1 Spring 98 EE201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6)
More informationHiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section
Hiro Shimoyama 1 harge of an Electron Name ID Signature Partners Date Section Exercise caution when you turn on the power supply. If the circuit is implemented wrongly, some of elements will be burned.
More informationLab #3 Linearity, Proportionality, and Superposition
This lab experiment will focus on three concepts. Those concepts are linearity, proportionality, and superposition. Linearity and proportionality are like twins; they look similar at first glance, but
More informationIntro Activities Worksheet
Intro Activities Worksheet Understanding the cience and Mathematics Note: You may use the definitions to help you complete the activities below. Activity 1: Discovering Nondestructive Testing (NDT) You
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationElectricity. Lily, Laura, Lynette, Elyse, Gillian, Emma, Hailey Period 2. onedio.com
Electricity Lily, Laura, Lynette, Elyse, Gillian, Emma, Hailey Period 2 onedio.com Electrostatics vs. Electricity Electrostatics is the study of charges at rest Electrostatics: to help remember the difference
More informationEXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA
EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor
More informationParallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,
More information6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360.
ME 360 Fall 2008 Semester Test #1 9/24/08 Closed book, closed notes portion of test. When you turn in this part of the test you will get the second part which allows a page of handwritten formulas. There
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationECE 220 Laboratory 4 Volt Meter, Comparators, and Timer
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory
More informationIndustrial Electricity
Industrial Electricity PRELAB / LAB 7: Series & Parallel Circuits with Faults Name PRELAB due BEFORE beginning the lab (initials required at the bottom of page 3) PLEASE TAKE THE TIME TO READ THIS PAGE
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationEXPERIMENT 5A RC Circuits
EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationIntroduction. Prelab questions: Physics 1BL KIRCHOFF S RULES Winter 2010
Introduction In this lab we will examine more complicated circuits. First, you will derive an expression for equivalent resistance using Kirchhoff s Rules. Then you will discuss the physics underlying
More informationDesigning Information Devices and Systems I Spring 2018 Homework 7
EECS 6A Designing Information Devices and Systems I Spring 08 Homework 7 This homework is due March, 08, at 3:59. Selfgrades are due March 5, 08, at 3:59. Submission Format Your homework submission should
More informationCOPYRIGHTED MATERIAL. DC Review and PreTest. Current Flow CHAPTER
Kybett c0.tex V303/3/2008 8:44pm Page CHAPTER DC Review and PreTest Electronics cannot be studied without first understanding the basics of electricity. This chapter is a review and pretest on those
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More information4.2 Graphs of Rational Functions
4.2. Graphs of Rational Functions www.ck12.org 4.2 Graphs of Rational Functions Learning Objectives Compare graphs of inverse variation equations. Graph rational functions. Solve realworld problems using
More informationWhere, τ is in seconds, R is in ohms and C in Farads. Objective of The Experiment
Introduction The famous multivibrator circuit was first introduced in a publication by Henri Abraham and Eugene Bloch in 1919. Multivibrators are electronic circuits designed for the purpose of applying
More informationElectromagnetism Review Sheet
Electromagnetism Review Sheet Electricity Atomic basics: Particle name Charge location protons electrons neutrons + in the nucleus  outside of the nucleus neutral in the nucleus What would happen if two
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationPractical 1 RC Circuits
Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationKIRCHHOFF S LAWS. Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors.
KIRCHHOFF S LAWS Lab Goals: Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors. Lab Notebooks: Write descriptions of all of your experiments in your
More informationhttps://www.youtube.com/watch?v=yc2363miqs
https://www.youtube.com/watch?v=yc2363miqs SCIENCE 9 UNIT 3 ELECTRICITY Remember: In the last unit we learned that all matter is made up of atoms atoms have subatomic particles called, protons, neutrons
More informationLesson Plan: Electric Circuits (~130 minutes) Concepts
Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of
More informationEF 152 Exam 2 (E&M)  Spring, 2018 Page 1 Version: A Copy 480
EF 152 Exam 2 (E&M)  Spring, 2018 Page 1 Version: A Copy 480 Name: Section: Seat Assignment: Specify your EXAM ID on the right. Use 000 if you do not know your exam ID. 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5
More informationAs light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
More informationExperiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.
Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2
More informationElectrostatics and Charge. Creating Electric Fields
Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement
More informationSimultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationINSPIRE GK12 Lesson Plan
Lesson Title Length of Lesson Created By Subject Grade Level 1112 State Standards Physics: 5 DOK Level DOK 4 DOK Application National Standards Graduate Research Element Student Learning Goal: Capacitance
More informationCurrent Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3
Current Electricity ScienceLinks 9, Unit 4 SciencePower 9, Unit 3 Current Electricity The flow of negative charges (electrons) through conductors Watch the BrainPOPs: Electricity Current Electricity Activity:
More informationPOE Practice Test  Electricity, Power, & Energy
Class: Date: POE Practice Test  Electricity, Power, & Energy Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following forms of energy is
More information1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the
More informationPhysics 102: Lecture 05 Circuits and Ohm s Law
Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy
More informationSuperposition theorem
Superposition theorem This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationSmall Signal Model. S. Sivasubramani EE101 Small Signal  Diode
Small Signal Model i v Small Signal Model i I D i d i D v d v D v V D Small Signal Model Mathematical Analysis V D  DC value v d  ac signal v D  Total signal (DC ac signal) Diode current and voltage
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationmeas (1) calc calc I meas 100% (2) Diff I meas
Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationLM34  Precision Fahrenheit Temperature Sensor
 Precision Fahrenheit Temperature Sensor Features Typical Application Calibrated directly in degrees Fahrenheit Linear +10.0 mv/ F scale factor 1.0 F accuracy guaranteed (at +77 F) Parametric Table Supply
More informationCapacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)
apacitors THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = V (1) where is a proportionality constant known as the
More informationLab 4 Series and Parallel Resistors
Lab 4 Series and Parallel Resistors What You Need To Know: The Physics Last week you examined how the current and voltage of a resistor are related. This week you are going to examine how the current and
More informationAddressing Learning Difficulties with Circuits: An Aufbau* Approach
Addressing Learning Difficulties with Circuits: An Aufbau* Approach David E. Meltzer Department of Physics and Astronomy Iowa State University * Aufbau = building up as in, e.g., atomic physics. Research
More information