(d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do?

Size: px
Start display at page:

Download "(d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do?"

Transcription

1 uggé: DC Circuits 2 Learning the Language for DC Circuits 2.1 Circuit Diagrams (a) circuit diagram is a representation that uses symbols to show the components in a circuit and how they are connected: Symbol Meaning battery light bulb switch oth sides switch is The short side must be drawn as indicates the connected Notes "open" in a positive end of for the circuit the battery bulb to diagram. light Symbols can be drawn in any orientation Wires connect at the points shown with X x (b) Use the symbols to draw a circuit for a battery, a light bulb, and a single wire. Make sure the diagram represents a circuit in which the bulb would light. x (c) Use the symbols to draw a DIFFERENT circuit diagram for a battery, a light bulb, and a single wire. Make sure the diagram represents a circuit in which the bulb would light. (d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do?) Resistor mmeter Voltmeter Measures current through Measures potential difference across Ground Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

2 uggé: DC Circuits Reason a. We learned that for a light bulb to glow, the two poles of a battery must be connected to the light bulb with conducting wires. Use you knowledge of the internal structure of conductors and understanding of the role of a battery to come up with analogies that can explain and predict phenomena related to electric circuits. fter you come up with your own analogies, examine two more analogies: one involving flowing water and the other involving a group of people running on a track. Remember that an analogy does not need to account for all aspects of a phenomenon. However, if you find similar aspects, make a note of them. Parts of the Electric Circuit attery Create your own analogy Parts of the water system analogy Parts of the running people system analogy Connecting wires Moving Electrons Light bulb, resistor b. Reason: Use the concept of potential difference to explain the role of a battery in a circuit. c. Describe an analogy between some part of a system with water flow in a pipe caused by a pump and the potential difference provided by a battery in a circuit. d. Describe an analogy between some part of a system with water flow in a pipe caused by a pump and the physical quantity electric current in a circuit. Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

3 uggé: DC Circuits 2 e. Use the flowing-water system, running-people system, and your own analogy to find analogies for the quantities potential difference and electric current. Fill in the table that follows. Electric Circuit Own analogy Water System Running People Potential difference between two points Current through wire f. Use the flowing-water system, running-people system, and your own analogy to find analogies for the quantities series circuit and parallel circuit. Fill in the table that follows. Observed Properties of the electric current When batteries are in series, the light bulb is brighter Own analogy Observed properties of the water system Observed properties of the running people system When identical batteries are in parallel, the lightbulb is the same brightness g. How can we explain the brightness of a light bulb using an energy explanation? Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

4 uggé: DC Circuits Test your Ideas For each of the following circuits below; predict the brightness of the bulbs. Identify each circuit as series or parallel. Then, build the circuits using the PhET Circuit Construction Kit Simulation. re the results consistent with the predicted outcome? Explain the results using any of your analogies of electric phenomena. (a) (b) (c) (d) (e) Circuit Prediction Results Explanation/Reconciliation a b c d e Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

5 uggé: DC Circuits Reason (a) Consider the following partial circuit diagrams below, and indicate whether components between point and point are in parallel or in series: Consider the circuit drawn below, including batteries and and the three light bulbs: (b) Indicate two sets of components that are each connected in series. (c) Indicate at least one set of components that are each connected in parallel. 2.5 Represent and Reason (a) Predict how the brightness of the top bulb shown in the illustration to the right changes when you close switch 1. 1 (b) Predict how the brightness of the top bulb changes when you close switch 2 (switch 1 is open). 2 (c) Rate the brightness of the three bulbs when both of the switches are closed. Explain your reasoning using any of the analogies. (d) Perform the experiment, record your observations, and compare them to your predictions. REFLECT: How would you explain to someone who did not study physics what the physical quantities electric current and potential difference describe. Why do we need both? Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

6 uggé: DC Circuits 2 Did You Know? Current: When there is a potential difference across a light bulb filament or just a wire in a closed circuit, the electrons in the wire move from lower potential to higher potential. However the conventional direction of the current is from high potential to low potential. You are probably asking why physicists came up with such an awkward convention. The answer is simple. We did not know any better. enjamin Franklin knew that some charged objects moved (he thought it was a fluid not particles), but he did not know if the fluid was positive or negative. With a fifty percent chance of getting it right he guessed wrong and we have been stuck with the convention ever since. We now know that not only do electrons move over the surface of the wire, but that the battery is not the source of electrons. The electrons that move through the circuit are the electrons that were initially in the wire (light bulb filament). These free electrons move randomly in all directions inside the wire that is not placed in external electric field. atteries create electric field (potential difference is one way to characterize that field) that adds some organized movement in a particular direction to the random motion of free electrons. They start drifting. Light ulbs: Filament of an incandescent light bulb lights up because it becomes very hot due to the current through it. s electrons move over the surface of the filament wire, they transfer kinetic energy to the ions of the filament through interactions with them. s the energy of particles in the wire increases, its temperature increases and it starts glowing. Lesson activities adapted from LG and PUM, Etkina and Van Heuvelen, 2010

Sierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits

Sierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits Searching for Series and Parallel Circuits. Observe and Design Draw circuit diagrams according to the word descriptions below. Build the circuits and use the symbols to represent the battery and the light

More information

Lab 8 Simple Electric Circuits

Lab 8 Simple Electric Circuits Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking

More information

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter. PS 12b Lab 1a Fun with Circuits Lab 1a Learning Goal: familiarize students with the concepts of current, voltage, and their measurement. Warm Up: A.) Given a light bulb, a battery, and single copper wire,

More information

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

More information

Name Date Time to Complete

Name Date Time to Complete Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to

More information

Electricity and Magnetism Module 4 Student Guide

Electricity and Magnetism Module 4 Student Guide Electricity and Magnetism Module 4 Student Guide Note: each time you are finished with a circuit we ask that you disconnect all wires, so that the next circuit you investigate starts with a blank slate.

More information

T U T O R I A L : A M O D E L F O R C I R C U I T S

T U T O R I A L : A M O D E L F O R C I R C U I T S South Pasadena Physics Name 10 Circuits Period Date T U T O R I A L : A M O D E L F O R C I R C U I T S Tutorial Instructions This Tutorial contains Activities and Exercises. Activities: These are intended

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts

More information

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements. Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will continue your exploration of dc electric circuits with a steady current. The circuits will be

More information

1. How does a light bulb work?

1. How does a light bulb work? AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, cross-sectional area and length. 2. Relate the movement of charge to differences

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Ohm s Law Book page Syllabus 2.10

Ohm s Law Book page Syllabus 2.10 Ohm s Law Book page 85 87 Syllabus 2.10 What s wrong with this circuit diagram? Task 2 Sketch a simple series circuit containing a cell and a bulb. On your circuit diagram, show an ammeter and voltmeter

More information

A model for circuits part 2: Potential difference

A model for circuits part 2: Potential difference A model for circuits part 2: Potential difference I. Using the CCK simulation The Circuit Construction Kit (CCK) accurately simulates the behavior of electrical circuits. Hints for use: Right-click on

More information

Electrical Circuits Question Paper 8

Electrical Circuits Question Paper 8 Electrical Circuits Question Paper 8 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 8

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY. Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

More information

Lab 3 Parallel Circuits

Lab 3 Parallel Circuits Lab 3 Parallel Circuits!!! RED THIS PGE!!!! When a wire or light bulb is connected across a battery, we have evidence that something is happening in the circuit. The wire gets warm. The bulb glows. In

More information

Figure 1: Capacitor circuit

Figure 1: Capacitor circuit Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

More information

ELECTRICAL FORCE UNIT NOTES

ELECTRICAL FORCE UNIT NOTES ELECTRICAL FORCE UNIT NOTES Property that causes electrical force is called Charge Opposite charges Attract Like charges Repel Charge comes from the atoms. Electrons are negative, protons are positive.

More information

Lab 4. Current, Voltage, and the Circuit Construction Kit

Lab 4. Current, Voltage, and the Circuit Construction Kit Physics 2020, Spring 2009 Lab 4 Page 1 of 8 Your name: Lab section: M Tu Wed Th F TA name: 8 10 12 2 4 Lab 4. Current, Voltage, and the Circuit Construction Kit The Circuit Construction Kit (CCK) is a

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A.

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A. CLSS-10 1. Explain how electron flow causes electric current with Lorentz-Drude theory of electrons?. Drude and Lorentz, proposed that conductors like metals contain a large number of free electrons while

More information

Electric Circuits. AP Physics 1

Electric Circuits. AP Physics 1 Electric Circuits AP Physics Potential Difference =oltage=emf n a battery, a series of chemical reactions occur in which electrons are transferred from one terminal to another. There is a potential difference

More information

Framework for using modern devices in an introductory physics course

Framework for using modern devices in an introductory physics course Framework for using modern devices in an introductory physics course Gorazd Planinšič Faculty for Mathematics and Physics University of Ljubljana, Slovenia Eugenia Etkina Graduate School of Education,

More information

I depicted in Figure 1. When a current of I amps (A) flows through the resistor, a voltage drop V AB volts (V) appears across the terminals A and B.

I depicted in Figure 1. When a current of I amps (A) flows through the resistor, a voltage drop V AB volts (V) appears across the terminals A and B. ntroduction to DC Circuits v 0.92: September 20, 2018 Gerald ecktenwald gerry@pdx.edu 1 ntroduction Engineers from all disciplines need to have working knowledge of basic electrical circuits. These notes

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First Ultra High Vacuum (UHV) at GT can analyze sample surfaces with Leed and Auger. Problem: Can this wire be used

More information

An Introduction to Electricity and Circuits

An Introduction to Electricity and Circuits An Introduction to Electricity and Circuits Materials prepared by Daniel Duke 4 th Sept 2013. This document may be copied and edited freely with attribution. This course has been designed to introduce

More information

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp? Questions Q1. Select one answer from A to D and put a cross in the box ( ) Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament

More information

SAM Teachers Guide Electricity

SAM Teachers Guide Electricity SAM Teachers Guide Electricity Overview Students explore the role of electron voltage and density on electric current. They compare the movement of electrons in a conductor and an insulator. They derive

More information

(b) State the relation between work, charge and potential difference for an electric circuit.

(b) State the relation between work, charge and potential difference for an electric circuit. Question Bank on Ch-Electricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential

More information

Circuits. Electric Current & DC Circuits Circuits. Unit 6. April Electric Current. Electric Current. Electric Current. ΔQ Δt

Circuits. Electric Current & DC Circuits Circuits. Unit 6. April Electric Current. Electric Current. Electric Current. ΔQ Δt Electric Current & DC Circuits Electric Current & DC Circuits Circuits Conductors esistivity and esistance Click on the topic to go to that section Circuit Diagrams Measurement Electric Current Circuits

More information

Materials Needed 1 D-Cell battery 6 6-inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional)

Materials Needed 1 D-Cell battery 6 6-inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional) Experiment Module 3 Electric Circuits Objective/Introduction This experiment explores building simple circuits and testing Ohm s Law. Students will start lighting a simple light bulb. Then they will explore

More information

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws Resistance Resistors Series Parallel Ohm s law Electric Circuits Physics 132: Lecture e 17 Elements of Physics II Current Kirchoff s laws Agenda for Today Physics 201: Lecture 1, Pg 1 Clicker Question

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-4 Resistivity Example 25-5: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper

More information

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge. Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

More information

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Greek Letter Omega Ω = Ohm (Volts per Ampere) ) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

More information

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity

More information

Electric Currents and Circuits

Electric Currents and Circuits Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

More information

Voltage Current and Resistance

Voltage Current and Resistance ELEN 236 oltage, Current and Resistance oltage Current and Resistance Basics (ll bout Circuits: DC-Ch1) (Q s 1-22) Look at EpropsF Water nalogy (remember to press and hold Low, Medium, or High to get pumps

More information

What is dynamic electricity?

What is dynamic electricity? Dynamic Electricity What is dynamic electricity? Has to do with charges in motion So we re talking about moving electrons Think about any electronic device Dynamic electricity Think back to properties

More information

NAME: BATTERY IS TURNED ON TO +1.5 V. BATTERY IS TURNED ON TO -1.5 V.

NAME: BATTERY IS TURNED ON TO +1.5 V. BATTERY IS TURNED ON TO -1.5 V. AP PHYSICS 2 LAB: CAPACITANCE NAME: Google: Phet capacitor lab PART I CAPACITOR Go to the tab Dielectric Increase the plate area to 4. mm 2. Make sure the offset of the dielectric is. mm. Make sure the

More information

General Physics II (PHYS 104) Exam 2: March 21, 2002

General Physics II (PHYS 104) Exam 2: March 21, 2002 General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the

More information

Name... Class... Date...

Name... Class... Date... The power of lamps Specification references: P2.4.1 Power P2.4.2 Energy transfers in everyday appliances (part) MS 1a, 2a, 3b, 3c, 3d WS 1.2, 2.6, 3.1, 3.3 Aims In this practical, you will observe the

More information

Conventional versus electron flow

Conventional versus electron flow Conventional versus electron flow "The nice thing about standards is that there are so many of them to choose from." Andrew S. Tanenbaum, computer science professor When Benjamin Franklin made his conjecture

More information

Chapter 16: DC Circuits

Chapter 16: DC Circuits Chapter 16: DC Circuits Why might all the electrical devices in your house suddenly turn off if you simultaneously turn too many on? How can you use an electric circuit to model the circulatory system?

More information

Gr. 11 Physics Electricity

Gr. 11 Physics Electricity Gr. 11 Physics Electricity This chart contains a complete list of the lessons and homework for Gr. 11 Physics. Please complete all the worksheets and problems listed under Homework before the next class.

More information

Algebra Based Physics

Algebra Based Physics Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 2015-10-06 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

More information

Physics 2020 Lab 5 Intro to Circuits

Physics 2020 Lab 5 Intro to Circuits Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Lights, sound systems, microwave ovens, and computers are all connected by wires to a battery or an electrical outlet. How and why does electric current flow through a wire? Chapter Goal: To learn how

More information

Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

More information

Physics 2080 Extra Credit Due March 15, 2011

Physics 2080 Extra Credit Due March 15, 2011 Physics 2080 Extra Credit Due March 15, 2011 This assignment covers chapters 15-19 and is worth 10 points extra credit on the final exam. Print these pages and do all work here. Complete the questions

More information

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

Energy Conservation in Circuits Final Charge on a Capacitor. Recorder Manager Skeptic Energizer

Energy Conservation in Circuits Final Charge on a Capacitor. Recorder Manager Skeptic Energizer Energy Conservation in Circuits Final Charge on a Capacitor Recorder Manager Skeptic Energizer Using an ammeter Set up a digital multimeter to be an ammeter. Since you will be measuring currents larger

More information

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Women in ancient Greece noticed that rubbing their amber jewelry against

More information

Can You Light the Bulb?

Can You Light the Bulb? AP PHYSCS 2 Can You Light the Bulb? UNT 4 DC circuits and RC circuits. CHAPTER 16 DC CRCUTS 1. Draw wires and make the bulb light. 2. Modify your drawing and use ONE wire only! Complete circuits To check

More information

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena. Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

More information

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws

More information

Yr. 9 Electricity WorkBook

Yr. 9 Electricity WorkBook Yr. 9 Electricity WorkBook On completion of this booklet students should be able to: Recall the structure of a neutral atom: three particles, their charges, their location; Nucleus (Proton positive, Neutron-

More information

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving) Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

More information

Circuits. 1. The Schematic

Circuits. 1. The Schematic + ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools

More information

CASTLE Unit 2-READING 1

CASTLE Unit 2-READING 1 Schematic Diagram Figures CASTLE Unit 2-EADING 1 Up to this point in our study of electricity, we have been representing our circuits by drawing real life pictures of the circuit components. As we begin

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

Chapter 16: DC Circuits

Chapter 16: DC Circuits Chapter 16: DC Circuits Why might all the electrical devices in your house suddenly turn off if you simultaneously turn too many on? How can you use an electric circuit to model the circulatory system?

More information

Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Electric Current & DC Circuits  How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors The important thing to note is that: the two left ends of the resistors are at the same potential. Also, the two

More information

Electrical Circuits Question Paper 1

Electrical Circuits Question Paper 1 Electrical Circuits Question Paper 1 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type Alternative to Practical Booklet Question Paper

More information

Electrodynamics. Review 8

Electrodynamics. Review 8 Unit 8 eview: Electrodynamics eview 8 Electrodynamics 1. A 9.0 V battery is connected to a lightbulb which has a current of 0.5 A flowing through it. a. How much power is delivered to the b. How much energy

More information

PHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits

PHY232 Spring 2008 Jon Pumplin  (Original ppt courtesy of Remco Zegers) Direct current Circuits PHY232 Spring 2008 Jon Pumplin http://www.pa.msu.edu/~pumplin/phy232 (Original ppt courtesy of Remco Zegers) Direct current Circuits So far, we have looked at systems with only one resistor PHY232 Spring

More information

Parallel Resistors (32.6)

Parallel Resistors (32.6) Parallel Resistors (32.6) Resistors connected at both ends are called parallel resistors Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Parallel Resistors (32.6)

More information

Circuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127

Circuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127 Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Electric Current & DC Circuits www.njctl.org Progressive Science Initiative This material is made freely available at www.njctl.org

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

Electromagnetism Checklist

Electromagnetism Checklist Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

Voltage Sources. Potential Energy vs. Electric Potential. Clicker Question: Clicker Question:

Voltage Sources. Potential Energy vs. Electric Potential. Clicker Question: Clicker Question: Electrostatics Cont. Physics Open House Wednesday, November 5th Lab Tours! Free Pizza and Soft Drinks! Star Party at Campus Observatory! Learn about the Physics Department and our majors Potential Energy

More information

Physics 22: Homework 4

Physics 22: Homework 4 Physics 22: Homework 4 The following exercises encompass problems dealing with capacitor circuits, resistance, current, and resistor circuits. 1. As in Figure 1, consider three identical capacitors each

More information

b. Which bulb is brightest? Justify your answer.

b. Which bulb is brightest? Justify your answer. Physics 2080 Final Exam Problems Due April 28, 2011 Instructions: This is part of the final exam. Books and notes are allowed, but all work should be YOUR OWN. Do not work in groups; every student should

More information

Let s go to something more concrete

Let s go to something more concrete Let s go to something more concrete Let me define an electric current Whenever charges of like sign are moving, an electric current exists Suppose I have a surface A with charges (assume + because of Franklin

More information

Lorik educational academy-vidyanagar

Lorik educational academy-vidyanagar Lorik educational academy-vidyanagar 9849180367 ----------------------------------------------------------------------------------------------------------------------- Section: Senior TOPIC: CURRENT ELECTRICITY

More information

Electricity 1.notebook. May 04, 2016 ELECTRICITY. objects.

Electricity 1.notebook. May 04, 2016 ELECTRICITY. objects. ELECTRICITY is objects. 1 2 3 4 5 6 Insulators and Conductors You should now know that electricity. 1. Electrical Insulator - Any substance in which Examples: 7 If atoms in an become charged with, these

More information

Physics - Grade 12. Revision Sheet for the Final Exam / Second Term. Academic Year: 2018/2019. Student s Name:.. Date: /3/2018

Physics - Grade 12. Revision Sheet for the Final Exam / Second Term. Academic Year: 2018/2019. Student s Name:.. Date: /3/2018 Physics - Grade 12 Revision Sheet for the Final Exam / Second Term Academic Year: 2018/2019 Student s Name:.. Date: /3/2018 Required Material: Chapter 18: Sections 1,2 & 3 (Textbook Pages: 628-661) Chapter

More information

SNC1D7 Current Electricity

SNC1D7 Current Electricity SNC1D7 Current Electricity Static electricity review... Static electricity is electrons gathered in one place (surface of object) and randomly move in all direction What do we use electricity for? hmm

More information

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes HPP Activity 68v1 Capacitors Charge Inside the Body A Close Look at Cell Membranes Our bodies store and use charge to transmit signals across nerves and to tell certain cells what to do and when to do

More information

The Digital Multimeter (DMM)

The Digital Multimeter (DMM) The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

More information

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

More information

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS electricity and magnetism. 5.1 Recognize that an electric charge tends to be static on insulators

More information

De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer

De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer Multiple Choice: 1. Which of the two arrangements shown has the smaller equivalent resistance between points a and

More information

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Circuits. Circuits. Electric Current & DC Circuits. current and circuits presentation March 22, How to Use this File.

Circuits. Circuits. Electric Current & DC Circuits. current and circuits presentation March 22, How to Use this File. New Jersey Center for Teaching and Learning Electric Current & DC Circuits Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non commercial

More information

The General Resistor Circuit Problem

The General Resistor Circuit Problem The General Resistor Circuit Problem We re now ready to attack the general resistor circuit problem that may have many sources of EMF, many resistors, and many loops. Remember, the basic laws that we ll

More information

Calculate the potential difference across the 45 Ω resistor

Calculate the potential difference across the 45 Ω resistor Q1.A student set up the electrical circuit shown in the figure below. (a) The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor. Potential difference =...

More information

Now let s look at some devices that don t have a constant resistance.

Now let s look at some devices that don t have a constant resistance. Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then

More information

Magnetism and Electricity Unit Design Rev9.08 Grade 5

Magnetism and Electricity Unit Design Rev9.08 Grade 5 Magnetism and Electricity Unit Design Rev9.08 Grade 5 RI Statements of Enduring Knowledge - (Established Goals): PS 1 Energy is necessary for change to occur in matter. Energy can be stored, transferred,

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3 Current Electricity ScienceLinks 9, Unit 4 SciencePower 9, Unit 3 Current Electricity The flow of negative charges (electrons) through conductors Watch the BrainPOPs: Electricity Current Electricity Activity:

More information

Electricity CHARGE. q = 1.6 x10-19 C

Electricity CHARGE. q = 1.6 x10-19 C Electricity CHARGE q = 1.6 x10-19 C How many protons in a Coulomb? -19 1.00 C x (1 proton) / (1.60 x 10 C) = 18 6.25x10 protons! Opposites Attract Most materials are Electrically NEUTRAL (lowest potential

More information