EE3CL4: Introduction to Linear Control Systems
|
|
- Magnus Charles
- 4 years ago
- Views:
Transcription
1 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018
2 2 / 17 Outline 1
3 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We have looked at using lead compensators to improve the transient performance of a closed loop lag compensators to improve the steady state error responses without changing the closed loop transient response too much. What if we wanted to do both?
4 5 / 17 Lead-lag compensation Apply lead design techniques to G(s) to adjust the closed loop transient response Then apply lag design techniques to G C,lead (s)g(s) to improve steady state error response without changing the closed loop transient response too much Resulting compensator: G C (s) = G C,lag (s)g C,lead (s) = K C,lagK C,lead (s + z lag )(s + z lead ) (s + p lag )(s + p lead ) How can we gain insight into what the compensator is doing?
5 6 / 17 Lead-lag approximation G C,lag (s)g C,lead (s) = K C,lagK C,lead (s + z lag )(s + z lead ) (s + p lag )(s + p lead ) Recall that for frequencies between z lead and p lead, lead compensator acts like a differentiator for frequencies between p lag and z lag, lag compensator acts like an integrator Rewrite: G C,lag (s)g C,lead (s) = K C,ll (s + z lag )(s + z lead ) (s + p lag )(1 + s/p lead ) as p lead gets big, and p lag gets small this starts to look like G C,lag (s)g C,lead (s) K C,ll (s + z lag )(s + z lead ) s for the values of s that are of greatest interest. Not physically realizable (more zeros than poles), but helpful approximation
6 7 / 17 Lead-lag to PID G C,lag (s)g C,lead (s) K C,ll (s + z lag )(s + z lead ) s Do a partial fraction on RHS and you get G C,lag (s)g C,lead (s) K P + K I s + K Ds With H(s) = 1, input to the compensator is e(t) = r(t) y(t) Compensator output: u(t) = L 1{ G C,lag (s)g C,lead (s)e(s) } = u(t) K P e(t) + K I That is, (approximately) PID control e(t) dt + K D de(t) dt
7 8 / 17 Variants of PID control PID: G c (s) = K P + K I /s + K D s. With K D = 0 we have a PI controller, G PI (s) = ˆK P + ˆK I /s. With K I = 0 we have a PD controller, G PD (s) = K P + K D s. As implicit in our derivation, a PID controller can be realized as the cascade of a PI controller and a PD controller; i.e., G PI (s)g PD (s) can be written as K P + K I /s + K D s
8 9 / 17 PID control and root locus Transfer function of idealized PID controller: G C (s) = K P + K I /s + K D s = K D(s + z 1 )(s + z 2 ) s That is, controller adds two zeros and a pole to the open loop transfer function The pole is at the origin The zeros can be arbitrary real numbers, or an arbitrary complex conjugate pair This provides considerable flexibility in re-shaping the root locus
9 10 / 17 PID Tuning with G c (s) = K P + K I /s + K D s. How should we choose K P, K I and K D? Can formulate as a optimization problem; e.g., Find K P, K I and K D that minimize the settling time, subject to the damping ratio being greater than ζ min, the position and velocity error constants being greater than K posn,min and K v,min, the error constant for a step disturbance being greater than K dist,posn,min, and the loop being stable Typically difficult to find the optimal solution Many ad-hoc techniques that usually find good solutions have been proposed.
10 11 / 17 Zeigler Nichols Tuning Two well established methods for finding a good solution in some common scenarios Often useful in practice because they can be applied to cases in which the model has to be measured (no analytic transfer function) We will look at the ultimate gain method This is based on the step response of the system However, the method is only suitable for a certain class of systems and a certain class of design goals You need to make sure that the system you wish to control falls into an appropriate class. You also need to ensure that the ZN tuning goals match your design goals. The ZN tuning scheme gives considerable weight to the response to disturbances
11 12 / 17 Ultimate Gain Zeigler Nichols Tuning 1 Set K I and K D to zero. 2 Increase K P until the system is marginally stable (Poles on the jω-axis) 3 The value of this gain is the ultimate gain, K U 4 The period of the sustained oscillations is called the ultimate period, T U (or P U ). (The position of the poles on the jω-axis is 2π/T U ) 5 The gains are then chosen using the following table
12 13 / 17 Ultimate Gain Zeigler Nichols Tuning
13 14 / 17 Manual refinement One way in which the design can be improved, is searching for nearby gains that improve the performance The following table provides guidelines for that local search. These are appropriate for a broad class of systems
14 15 / 17 Example G(s) = 1 s(s+b)(s+2ζω n), with b = 10, ζ = 1/ 2 and ω n = 4. Step 2: Plot root locus of G(s) to find K U and T U Step 3: K U = 885.5, Step 4: marginally stable poles: ±j7.5; T U = 0.83s Step 5: K P = 521.3, K I = , K D = 55.1
15 16 / 17 Example Step response of ZN tuned closed loop, K P = 521.3, K I = , K D = 55.1
16 17 / 17 Example Step response with manually modified gains, K P = 370, K I = 100, K D = 60
Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback
Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open
EE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
Course Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
Controls Problems for Qualifying Exam - Spring 2014
Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and
Unit 8: Part 2: PD, PID, and Feedback Compensation
Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:
Proportional plus Integral (PI) Controller
Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on
6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.
6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
Outline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system
ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root
INTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant
K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30
1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS
Software Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.
SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
Methods for analysis and control of dynamical systems Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline
Chapter 6 - Solved Problems
Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
ME 475/591 Control Systems Final Exam Fall '99
ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
Automatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward
Video 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable
Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
AN INTRODUCTION TO THE CONTROL THEORY
Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter
Improving a Heart Rate Controller for a Cardiac Pacemaker. Connor Morrow
Improving a Heart Rate Controller for a Cardiac Pacemaker Connor Morrow 03/13/2018 1 In the paper Intelligent Heart Rate Controller for a Cardiac Pacemaker, J. Yadav, A. Rani, and G. Garg detail different
Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22 - Lecture 4 Step response and pole locations 4 - Review Definition of -transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
Time Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =
Methods for analysis and control of. Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March
Chapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop
EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions
EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
Control Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
Lecture 10: Proportional, Integral and Derivative Actions
MCE441: Intr. Linear Control Systems Lecture 10: Proportional, Integral and Derivative Actions Stability Concepts BIBO Stability and The Routh-Hurwitz Criterion Dorf, Sections 6.1, 6.2, 7.6 Cleveland State
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
ECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
Control of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
Open Loop Tuning Rules
Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus
7.2 Controller tuning from specified characteristic polynomial
192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic
Analysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop
ECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
Linear State Feedback Controller Design
Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
1 Chapter 9: Design via Root Locus
1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2
2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada
PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop
EEE 184 Project: Option 1
EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same
DIGITAL CONTROLLER DESIGN
ECE4540/5540: Digital Control Systems 5 DIGITAL CONTROLLER DESIGN 5.: Direct digital design: Steady-state accuracy We have spent quite a bit of time discussing digital hybrid system analysis, and some
Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral
Dr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
EEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
arxiv: v1 [cs.sy] 30 Nov 2017
Disturbance Observer based Control of Integrating Processes with Dead-Time using PD controller Sujay D. Kadam SysIDEA Lab, IIT Gandhinagar, India. arxiv:1711.11250v1 [cs.sy] 30 Nov 2017 Abstract The work
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,
Alireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
Meeting Design Specs using Root Locus
Meeting Design Specs using Root Locus So far, we have Lead compensators which cancel a pole and move it left, speeding up the root locus. PID compensators which add a zero at s=0 and add zero, one, or
Root Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
Controller Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
Due Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
VALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
Single-Input-Single-Output Systems
TF 502 Single-Input-Single-Output Systems SIST, ShanghaiTech Introduction Open-Loop Control-Response Proportional Control General PID Control Boris Houska 1-1 Contents Introduction Open-Loop Control-Response
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design
AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability
IC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
Professional Portfolio Selection Techniques: From Markowitz to Innovative Engineering
Massachusetts Institute of Technology Sponsor: Electrical Engineering and Computer Science Cosponsor: Science Engineering and Business Club Professional Portfolio Selection Techniques: From Markowitz to
1 Controller Optimization according to the Modulus Optimum
Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)
Time Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
AMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system
Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state
EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING
EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
CYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
Design of a Lead Compensator
Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of
Feedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals
Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems
Ultimate State MEM 355 Performance Enhancement of Dnamical Sstems Harr G. Kwatn Department of Mechanical Engineering & Mechanics Drexel Universit Outline Design Criteria two step process Ultimate state
CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang
CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich
Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017
Cascade Control of a Continuous Stirred Tank Reactor (CSTR)
Journal of Applied and Industrial Sciences, 213, 1 (4): 16-23, ISSN: 2328-4595 (PRINT), ISSN: 2328-469 (ONLINE) Research Article Cascade Control of a Continuous Stirred Tank Reactor (CSTR) 16 A. O. Ahmed
Control Systems Lab - SC4070 Control techniques
Control Systems Lab - SC4070 Control techniques Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 16, 2015 (slides modified from
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
Tuning PI controllers in non-linear uncertain closed-loop systems with interval analysis
Tuning PI controllers in non-linear uncertain closed-loop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015 Closed-loop
Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes
Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus
R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
ECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
EE402 - Discrete Time Systems Spring Lecture 10
EE402 - Discrete Time Systems Spring 208 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 0.. Root Locus For continuous time systems the root locus diagram illustrates the location of roots/poles of a closed
Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30
289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap
Control System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #15 Friday, February 6, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method