Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:3012:30


 Bruno Bishop
 3 years ago
 Views:
Transcription
1 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (23 sessions) Final Exam on 12/21/2015 (Monday)10:3012:30 Today: Recap of Internal Model Control Systems and Control Review Servo valve modeling TA evaluation (5 mins)
2 Electrohydraulic Force/Torque Control 290 Objective: Accurately apply predefined force/torque (stress) trajectories to specimen Often until fails
3 291 Setup and Procedures Linear system: Actuator pushing against a leaf spring (one end constraint). Force measurement by load cell. Rotary system: Actuator torquing an aluminum rod. Torque measurement by torque cell. It is a new system! Expect some nonlinearity of the spring Apply all your knowledge!
4 292 Objectives: Design and implement controllers to accurately track different types of trajectories Steps: 1. System identification (valve command input, force/torque output) 2. Choose appropriate controllers for the trajectories (steps, biased sinusoids, triangular wave) 3. Analyze and design controllers 4. Implement control 5. Go to steps 2/3 and improve performance
5 293 Internal Model Control ProportionalIntegral control excellent for canceling constant disturbance or tracking constant command Generalize idea for other disturbances and commands, such as Sine/cosines, ramps, or other polynomials? Recall for PI: C(s) = Kp + KI/s PI control can generate constant input (u) even as error e(t) à 0 For other types of disturbances, the internal model control should generate input to cancel out disturbances.
6 Internal Model Control  Architecture Sine/cosine disturbance: U(s) = C(s) E(s) Suppose error converges to 0 so using partial fraction, So u(t) will generate some sinusoid/cosine term with frequency omega Cf. with integral control.. s on denominator in PI that generates constants
7 295 Internal Model Control  Architecture 2. Polynomials disturbances? 1, t, t 2, etc.? 3. Combinations of sinusoids and polynomials? 4. Trajectory tracking instead of disturbance rejection? To track sinusoids need sinusoidal inputs To track polynomials, need polynomials as inputs (check constant case)
8 296 Assigning Closed Loop Poles The above suggests the form (denominator) of C(s) for various disturbances How to pick numerator of C(s)? Choose closed loop poles and use numerator to achieve target pole locations What are desirable closed loop pole locations? E.g. G(s) = 2/(s+3); D(s) = sinusoids + constant Etc
9 297 Comparison between controllers P simple, need large Kp for good performance PI regulate constant command (or ramp for integrator plants) and rejecting constant disturbance; Values of disturbance or command no needed IMC track or reject sinusoids or polynomials Values of disturbance or command no needed Need only the type Feedforward Arbitrary command trajectories Can combine with feedback control, e.g. P, PI, or IMC
10 Feedforward Example 298 Supposed a closed loop system has been designed, we think it has a transfer function: Ĝ c (s) = 25 s + 25 Design a feedforward controller such that the output y(t) track an arbitrary trajectory r(t). Write it out in as sum of differentiators and proper transfer function. If the actual closed loop transfer function is: G c (s) = 20 s + 20 How would it change its ability to track sinusoids for different frequencies?
11 If a plant is a first order system IMC Example G(s) = 2 s Write down the form of the Internal Model Controllers if: r(t) =a + bt+ ccos(3t + d)+e sin(7t) d(t) =g + hcos(2t) How to find the coefficients of the IMC controller?
12 300 Objectives Introduce fluid power component, circuits, and systems Functions, modeling and analysis Provide hands on experience in designing, analyzing and implementing control systems for real and physical systems; Consolidate concepts in Systems Dynamics/Control (ME3281) modeling, control and other dynamical systems Course syllabus, lab assignments, notes, etc. on course webpage (subject to change without notice)
13 301 Expected Outcome Familiarity with common hydraulic components, their use, symbols, and mathematical models Ability to formulate / analyze math models for simple hydraulic circuits Comfortable with commercial hydraulic catalogs Ability to identify single input single output (SISO) dynamical systems Ability to design, analyze and implement simple control systems Appreciation of advantages and disadvantages of various types of controllers Ability to relate control systems analysis with actual performance Intuitive and mathematical appreciation of dynamical system concepts (e.g. stability, instability, resonance) Appreciation of unmodeled real world effects Become very familiar with using Matlab for analysis and plotting.
14 Critical Basic Concepts 302 Transfer function Inputoutput relationship Block diagram à transfer function Closed loop pole locations and characteristics of response Stability Steady state response via final value theorem Frequency response
15 Critical Controls Concepts 303 Control system objectives: Stability: Determined by closed loop pole location (Reference Tracking) Performance: Robustness to disturbance Insensitivity to model uncertainty Immunity to measurement noise
16 Feedback versus feedforward 304 Feedback control Advantages: Compensates for disturbances and model uncertainty Disadvantages: Can be unstable if not designed correctly Usually cannot track ARBITRARY reference trajectories PEFECTLY Feedforward control Advantages: Perfect tracking for ARBITRARY reference trajectories! Disadvantages: Cannot compensate for disturbances or model uncertainty Feedback and feedforward control can be combined!!!! TRY it for your lab 22! Feedforward keeps error small so higher feedback gains are possible
17 Comparison of Feedback Controllers Proportional Control 305 Advantage: Simple Disadvantages: Need infinity gain to good performance, Increases gain in all frequencies Compromise with noise and robustness, Steady error with constant disturbances or ramp (and step in general) inputs
18 306 ProportionalIntegral Control Advantages: Zerosteady state error for step (and ramps in general) references and disturbances Increases low frequency gain while keeping high frequency gain low Steady state error relatively insensitive to model uncertainty Disadvantages: Works only for limited set of reference trajectories and disturbances 2 gains to tune 2 nd order closed loop system (with 1 st order plant) à possibility of resonance, underdamped etc. Good for situations when required control input (in steady state) is a constant
19 307 Advantage: Internal Model Control (Generalized PI) Zerosteady state error for step, ramps, sinusoids, exponential etc. references and disturbances Increases gain at the specific frequency of references while keeping gains at other frequencies low Insensitive to model uncertainty as long as closed loop is stable Disadvantage: Works only for limited types of reference trajectories and disturbances Many gains to tune Complex needs to rely on analysis
20 Control Design Procedures 1. What is the system being controlled? Model it System identification Choose the type of controller P, PI, IMC, Feedforward etc. 3. Formulate closed loop transfer function, and analyze performance 4. Design desired pole locations (where should they be?) 5. Calculate the controller gains to obtain the poles 6. Add feedforward control
Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)
232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationCHAPTER 3 TUNING METHODS OF CONTROLLER
57 CHAPTER 3 TUNING METHODS OF CONTROLLER 3.1 INTRODUCTION This chapter deals with a simple method of designing PI and PID controllers for first order plus time delay with integrator systems (FOPTDI).
More informationControl of Electromechanical Systems
Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationCM 3310 Process Control, Spring Lecture 21
CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic SingleInput/SingleOutput (SISO) Feedback Figure
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationCBE507 LECTURE III Controller Design Using Statespace Methods. Professor Dae Ryook Yang
CBE507 LECTURE III Controller Design Using Statespace Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III 1 Overview States What
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationLast week: analysis of pinionrack w velocity feedback
Last week: analysis of pinionrack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s
More informationChapter 7 Interconnected Systems and Feedback: WellPosedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected
More informationYTÜ Mechanical Engineering Department
YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationsc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11
sc46  Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationLecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review timedomain characteristics of 2ndorder systems intro to control: feedback openloop vs closedloop control intro to
More informationReview: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control
Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Goal: understand the difference between openloop and closedloop (feedback)
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design
AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability
More informationPlan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control
Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic:
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationCourse Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).
ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationYTÜ Mechanical Engineering Department
YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationEECE 460 : Control System Design
EECE 460 : Control System Design SISO Pole Placement Guy A. Dumont UBC EECE January 2011 Guy A. Dumont (UBC EECE) EECE 460: Pole Placement January 2011 1 / 29 Contents 1 Preview 2 Polynomial Pole Placement
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationAcceleration Feedback
Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro Mechanics Electrical Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic
More informationChapter 7 Control. Part Classical Control. Mobile Robotics  Prof Alonzo Kelly, CMU RI
Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationA FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing
A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationCompensatorTuning for Didturbance Rejection Associated with Delayed Double Integrating Processes, Part II: Feedback Laglead Firstorder Compensator
CompensatorTuning for Didturbance Rejection Associated with Delayed Double Integrating Processes, Part II: Feedback Laglead Firstorder Compensator Galal Ali Hassaan Department of Mechanical Design &
More informationControl Systems. State Estimation.
State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may
More informationUltimate State. MEM 355 Performance Enhancement of Dynamical Systems
Ultimate State MEM 355 Performance Enhancement of Dnamical Sstems Harr G. Kwatn Department of Mechanical Engineering & Mechanics Drexel Universit Outline Design Criteria two step process Ultimate state
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More information10/8/2015. Control Design. Poleplacement by statespace methods. Process to be controlled. State controller
Poleplacement by statespace methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target
More informationSteady State Errors. Recall the closedloop transfer function of the system, is
Steady State Errors Outline What is steadystate error? Steadystate error in unity feedback systems Type Number Steadystate error in nonunity feedback systems Steadystate error due to disturbance inputs
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
More informationAutomatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Outline 2 Feedforward
More informationREPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM 1. Seunghyeokk James Lee 2, TsuChin Tsao
REPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM Seunghyeokk James Lee, TsuChin Tsao Mechanical and Aerospace Engineering Department University of California
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationSRV02Series Rotary Experiment # 1. Position Control. Student Handout
SRV02Series Rotary Experiment # 1 Position Control Student Handout SRV02Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the
More informationAnalysis and Synthesis of SingleInput SingleOutput Control Systems
Lino Guzzella Analysis and Synthesis of SingleInput SingleOutput Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems
More informationTopic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #17 16.31 Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 3, Part 2: Introduction to Affine Parametrisation School of Electrical Engineering and Computer Science Lecture 3, Part 2: Affine Parametrisation p. 1/29 Outline
More informationFRTN 15 Predictive Control
Department of AUTOMATIC CONTROL FRTN 5 Predictive Control Final Exam March 4, 27, 8am  3pm General Instructions This is an open book exam. You may use any book you want, including the slides from the
More informationChapter 7  Solved Problems
Chapter 7  Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal
More informationPlan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequencyresponse design method Goal: wrap up lead and
More informationCHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang
CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 111 Road Map of the Lecture XI Controller Design and PID
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationProportional, Integral & Derivative Control Design. Raktim Bhattacharya
AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationCHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER
114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationChapter 2 Review of Linear and Nonlinear Controller Designs
Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide
More informationLaboratory Exercise 1 DC servo
Laboratory Exercise DC servo PerOlof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationManufacturing Equipment Control
QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics
More informationResearch Article. World Journal of Engineering Research and Technology WJERT.
wjert, 2015, Vol. 1, Issue 1, 2736 Research Article ISSN 2454695X WJERT www.wjert.org COMPENSATOR TUNING FOR DISTURBANCE REJECTION ASSOCIATED WITH DELAYED DOUBLE INTEGRATING PROCESSES, PART I: FEEDBACK
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationProcess Control J.P. CORRIOU. Reaction and Process Engineering Laboratory University of LorraineCNRS, Nancy (France) Zhejiang University 2016
Process Control J.P. CORRIOU Reaction and Process Engineering Laboratory University of LorraineCNRS, Nancy (France) Zhejiang University 206 J.P. Corriou (LRGP) Process Control Zhejiang University 206
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationChapter 15  Solved Problems
Chapter 5  Solved Problems Solved Problem 5.. Contributed by  Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationControl Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani
Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 23 Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich September 28, 2018 J. Tani, E.
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
More informationHYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL USING A FEEDFORWARDPLUSPID CONTROL
HYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL UING A FEEDFORWARDPLUPID CONTROL Qin Zhang Department of Agricultural Engineering University of Illinois at UrbanaChampaign, Urbana, IL 68 ABTRACT: A practical
More informationChapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationRELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing
RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl
More informationControl for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e
Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servooriented
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : RouthHurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationLecture 9: Input Disturbance A Design Example Dr.Ing. Sudchai Boonto
DrIng Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand d u g r e u K G y The sensitivity S is the transfer function
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationSTABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationGeneral procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls
Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #14 Wednesday, February 5, 2003 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Chapter 7 Synthesis of SISO Controllers
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More information