Control Systems Lab - SC4070 Control techniques

Size: px
Start display at page:

Download "Control Systems Lab - SC4070 Control techniques"

Transcription

1 Control Systems Lab - SC4070 Control techniques Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.: TU Delft, February 16, 2015 (slides modified from the original drafted by Robert Babuška) M. Mazo Jr. (DCSC/TUD) Dynamics 1 / 36

2 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 2 / 36

3 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 3 / 36

4 Linear control design methods P, PD, PI, PID, lead-lag control (classical, in frequency) state feedback, output feedback (modern, in state-space) LQR, linear quadratic control (optimal) model predictive control (optimal, finite-horizon, constrained) robust control (H, µ synthesis) M. Mazo Jr. (DCSC/TUD) Dynamics 4 / 36

5 Nonlinear control techniques feedback linearization sliding-mode control nonlinear model predictive control passivity-based control knowledge-based control adaptive control hybrid control M. Mazo Jr. (DCSC/TUD) Dynamics 5 / 36

6 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 6 / 36

7 Computer-controlled systems: approach 1 Clock u(t) A-D Algorithm D-A System y(t) 1 Design a continuous-time controller, 2 then make sure that the (digital) computer implementation approximates the continuous-time controller as precisely as possible. M. Mazo Jr. (DCSC/TUD) Dynamics 7 / 36

8 Computer-controlled systems: approach 2 Clock u(t) A-D Algorithm D-A System y(t) 1 Describe the system from the computer s (digital) viewpoint, 2 and design directly a discrete-time controller. M. Mazo Jr. (DCSC/TUD) Dynamics 8 / 36

9 System from the computer s viewpoint Clock { u( t k )} D-A u( t) System y( t) A-D { y( t k )} Describe system (including converters) only over discrete sampling instants. M. Mazo Jr. (DCSC/TUD) Dynamics 9 / 36

10 A-D Converter: Zero-Order Hold t t t t t t Time u(t) = u(t k ), t k t < t k+1 Usually (but not necessarily) t k+1 t k = const = h. Higher-order converters are also possible. M. Mazo Jr. (DCSC/TUD) Dynamics 10 / 36

11 Zero-order hold sampling of systems Continuous-time system: dx(t) dt = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) Discrete-time system: x(k + 1) = Φx(k) + Γu(k) y(k) = Cx(k) + Du(k) with (recall solution of non-autonomous ODE): Φ = e Ah, Γ = h 0 e As dsb, Effect on eigenvalues placement. where h is the sampling period M. Mazo Jr. (DCSC/TUD) Dynamics 11 / 36

12 Useful basic MATLAB commands G = ss(a,b,c,d); % LTI continuous-time state-space model h = 0.1; H = c2d(g,h); % sampling period [s] % convert to discrete time (ZOH) H = c2d(g,h,method); % method = foh, matched,... G = d2c(h); % convert to continuous time (ZOH) M. Mazo Jr. (DCSC/TUD) Dynamics 12 / 36

13 Selection of sampling period (1st order) Number of samples per rise time: N r = Tr h 4 10 (a) (b) 1 (c) (d) Time Time (a) N r = 1 (b) N r = 2 (c) N r = 4 (d) N r = 8 M. Mazo Jr. (DCSC/TUD) Dynamics 13 / 36

14 Selection of sampling period (2nd order) N r = Tr h 4 10 corresponds to ω0h (a) (c) Time (b) (d) Time (a) h = (ω 0h = 0.23) (b) h = (ω 0h = 0.46) (c) h = (ω 0h = 0.92) (d) h = (ω 0h = 1.83) M. Mazo Jr. (DCSC/TUD) Dynamics 14 / 36

15 State feedback in DT: problem formulation Discretize LTI model choosing a sampling interval Model : x(k + 1) = Φx(k) + Γu(k) Linear controller : u(k) = Lx(k) Design parameters: closed-loop poles Evaluation: compare x(k) and u(k) with specifications (trade-off between control magnitude and speed of response) M. Mazo Jr. (DCSC/TUD) Dynamics 15 / 36

16 Poles placement: Ackermann s formula Compute L such that (Φ ΓL) has a desired characteristic polynomial P(z). Ackermann s formula: where: L = ( ) C 1 P(Φ) P(Φ) is the desired characteristic polynomial in Φ; C is the controllability matrix of the pair (Φ, Γ). Place poles inside unit ball. In Matlab: L = acker(phi,gamma,p) (SISO, numerical problems?) L = place(phi,gamma,p) (MISO, more robust) M. Mazo Jr. (DCSC/TUD) Dynamics 16 / 36

17 Alternatively, choose the desired poles in Continuous-Time Use the continuous-time 2nd order model, study its (continuous-time) characteristic polynomial: which (with zoh sampling) leads to: s 2 + 2ζωs + ω 2, z 2 + p 1z + p 2 where: p 1 = 2e ζωh cos (ωh ) 1 ζ 2 p 2 = e 2ζωh In Matlab use c2d to get the discrete time model (Φ, Γ). M. Mazo Jr. (DCSC/TUD) Dynamics 17 / 36

18 Linear quadratic control: LQR J = N x(k) T Qx(k) + u(k) T Ru(k), k=1 where (matrices, weights) Q, R are design parameters. A state feedback matrix L that gives a minimal J can be found by solving an associated algebraic Riccati equation. Similar to pole placement, but no need to define poles! In Matlab: dlqr(phi,gamma,q,r) In Matlab: dlqry(phi,gamma,c,d,q,r) % state weighting % output weighting M. Mazo Jr. (DCSC/TUD) Dynamics 18 / 36

19 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 19 / 36

20 State estimation: observers x(k + 1) = Φx(k) + Γu(k) y(k) = Cx(k) Assume input and output are available, reconstruct the state: Direct calculation; Luenberger observer (model-based); Kalman filter (optimal in presence of Gaussian noise). Note: the terms observer, estimator, filter are in this context used synonymously. M. Mazo Jr. (DCSC/TUD) Dynamics 20 / 36

21 Model-based estimation 1 Consider the model: ˆx(k + 1) = Φˆx(k) + Γu(k) 2 Introduce feedback from measured y(k) ˆx(k + 1) = Φˆx(k) + Γu(k) + K[y(k) C ˆx(k)] 3 Define the estimation error e = x ˆx e(k + 1) = Φe(k) KCe(k) = [Φ KC]e(k) M. Mazo Jr. (DCSC/TUD) Dynamics 21 / 36

22 Observer block diagram y( k) K ^ u( k) x( k+ 1) 1 z ^ x( k) C ^ y( k) ^ x( k) M. Mazo Jr. (DCSC/TUD) Dynamics 22 / 36

23 Output feedback (observer + state feedback) ( ) ˆx(k + 1) = Φˆx(k) + Γu(k) + K y(k) C ˆx(k) u(k) = Lˆx(k) M. Mazo Jr. (DCSC/TUD) Dynamics 23 / 36

24 Poles of the closed-loop system x(k + 1) = Φx(k) + Γu(k) e(k + 1) = (Φ KC)e(k) u(k) = L(x(k) e(k)) ( x(k + 1) e(k + 1) ) = ( Φ ΓL ΓL 0 Φ KC ) ( x(k) e(k) ) Separation principle: (Closed-loop) Process poles: A r (z) = det(zi Φ + ΓL) Observer poles: A o(z) = det(zi Φ + KC) M. Mazo Jr. (DCSC/TUD) Dynamics 24 / 36

25 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 25 / 36

26 Feed-forward (two-degree-of-freedom) Goal: respond to a reference signal with desired specs. Approach: Replace u(k) = Lˆx(k) by: u(k) = Lˆx(k) + L cu c(k) u c L c x^ -L u Process y Observer M. Mazo Jr. (DCSC/TUD) Dynamics 26 / 36

27 Feed-forward (two-degree-of-freedom) Closed-loop system: x(k + 1) = (Φ ΓL)x(k) + ΓLe(k) + ΓL cu c(k) e(k + 1) = (Φ KC)e(k) y(k) = Cx(k) Transfer function from u c to y (for impulse response): H cl (z) = C(zI Φ + ΓL) 1 ΓL c = L c B(z) A r (z) M. Mazo Jr. (DCSC/TUD) Dynamics 27 / 36

28 Application to a nonlinear system y 0 u 0 y 0 Reference Feedforward controller Nonlinear system δy δ Feedback controller M. Mazo Jr. (DCSC/TUD) Dynamics 28 / 36

29 Control by local linear controller u u 0 Nonlinear system Linearized model δ y 0 y Linear controller δ M. Mazo Jr. (DCSC/TUD) Dynamics 29 / 36

30 Model-based adaptive control u y r Controller Process Design parameters Linear model y m - Adaptation M. Mazo Jr. (DCSC/TUD) Dynamics 30 / 36

31 Outline 1 Overview of control design methods 2 Continuous vs. discrete time design 3 State-feedback control, observers 4 Control architectures, nonlinear control 5 PID controllers M. Mazo Jr. (DCSC/TUD) Dynamics 31 / 36

32 Continuous-time PID controller The textbook version of a PID controller: ( u(t) = K e(t) + 1 t ) de(t) e(s)ds + T d T i dt A more realistic PID controller: ( U(s) = K (U c(s) Y (s)) + 1 ) st d (U c(s) Y (s)) st i 1 + st d /N Y (s) Note: u c(t) is the reference that we want the output to follow. M. Mazo Jr. (DCSC/TUD) Dynamics 32 / 36

33 Discrete-time PID controller P-term: P(k) = K(u c(k) y(k)) I-term: I (k + 1) = I (k) + K T i e(k) D-term: D(k) = T d D(k 1) KT d N T d +Nh T d (y(k) y(k 1)) +Nh u(k) = P(k) + I (k) + D(k) Note: Backward-difference used to approximate the D-term, i.e. s z 1 hz M. Mazo Jr. (DCSC/TUD) Dynamics 33 / 36

34 PID tuning Pole placement Root locus Bode diagram (Heuristic) Tuning rules (Ziegler-Nichols, λ tuning) K p G(s) = e t 0s (τs + 1) K c = τ K p(λ + t 0), T i = τ, T d = t0 2 M. Mazo Jr. (DCSC/TUD) Dynamics 34 / 36

35 Example of a complete controller: Cascaded control on an Inverted Pendulum Reference Position controller Angle controller Inverted pendulum M. Mazo Jr. (DCSC/TUD) Dynamics 35 / 36

36 The End Thanks for your attention! Questions? M. Mazo Jr. (DCSC/TUD) Dynamics 36 / 36

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction

More information

Control Systems Lab - SC4070 System Identification and Linearization

Control Systems Lab - SC4070 System Identification and Linearization Control Systems Lab - SC4070 System Identification and Linearization Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 13, 2015 (slides

More information

Department of Electronics and Instrumentation Engineering M. E- CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I- BASICS AND ROOT-LOCUS DESIGN PART-A (2 marks) 1. What are the

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

Chapter 6 State-Space Design

Chapter 6 State-Space Design Chapter 6 State-Space Design wo steps. Assumption is made that we have all the states at our disposal for feedback purposes (in practice, we would not measure all these states). his allows us to implement

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Sampling of Linear Systems

Sampling of Linear Systems Sampling of Linear Systems Real-Time Systems, Lecture 6 Karl-Erik Årzén January 26, 217 Lund University, Department of Automatic Control Lecture 6: Sampling of Linear Systems [IFAC PB Ch. 1, Ch. 2, and

More information

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 2-3 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 28, 2018 J. Tani, E.

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

More information

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Module 08 Observability and State Estimator Design of Dynamical LTI Systems Module 08 Observability and State Estimator Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha November

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

16.30 Estimation and Control of Aerospace Systems

16.30 Estimation and Control of Aerospace Systems 16.30 Estimation and Control of Aerospace Systems Topic 5 addendum: Signals and Systems Aeronautics and Astronautics Massachusetts Institute of Technology Fall 2010 (MIT) Topic 5 addendum: Signals, Systems

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation EE480.3 Digital Control Systems Part 7. Controller Design I. - Pole Assignment Method - State Estimation Kunio Takaya Electrical and Computer Engineering University of Saskatchewan February 10, 2010 **

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Discrete-time systems p. 1/30 4F3 - Predictive Control Discrete-time State Space Control Theory For reference only Jan Maciejowski jmm@eng.cam.ac.uk 4F3 Predictive Control - Discrete-time

More information

ECE504: Lecture 9. D. Richard Brown III. Worcester Polytechnic Institute. 04-Nov-2008

ECE504: Lecture 9. D. Richard Brown III. Worcester Polytechnic Institute. 04-Nov-2008 ECE504: Lecture 9 D. Richard Brown III Worcester Polytechnic Institute 04-Nov-2008 Worcester Polytechnic Institute D. Richard Brown III 04-Nov-2008 1 / 38 Lecture 9 Major Topics ECE504: Lecture 9 We are

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

Department of Electrical and Computer Engineering ECED4601 Digital Control System Lab3 Digital State Space Model

Department of Electrical and Computer Engineering ECED4601 Digital Control System Lab3 Digital State Space Model Department of Electrical and Computer Engineering ECED46 Digital Control System Lab3 Digital State Space Model Objectives. To learn some MATLAB commands that deals with the discrete time systems.. To give

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems Spectral Properties of Linear- Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of single-input/singleoutput (SISO) systems! Characterizations

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 2 p 1/23 4F3 - Predictive Control Lecture 2 - Unconstrained Predictive Control Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 2 p 2/23 References Predictive

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University ECEn 483 / ME 431 Case Studies Randal W. Beard Brigham Young University Updated: December 2, 2014 ii Contents 1 Single Link Robot Arm 1 2 Pendulum on a Cart 9 3 Satellite Attitude Control 17 4 UUV Roll

More information

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method EE480.3 Digital Control Systems Part 7. Controller Design I. - Pole Assignment Method Kunio Takaya Electrical and Computer Engineering University of Saskatchewan March 3, 2008 ** Go to full-screen mode

More information

Digital Control: Summary # 7

Digital Control: Summary # 7 Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)

More information

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 2010-2011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 2010-2011 1 / 31 ime-discretization

More information

Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28

Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28 Ingegneria dell Automazione - Sistemi in Tempo Reale Selected topics on discrete-time and sampled-data systems Luigi Palopoli palopoli@sssup.it - Tel. 050/883444 Ingegneria dell Automazione - Sistemi in

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Lecture plan: Control Systems II, IDSC, 2017

Lecture plan: Control Systems II, IDSC, 2017 Control Systems II MAVT, IDSC, Lecture 8 28/04/2017 G. Ducard Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL

Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL M. Heuer 1 G. Lichtenberg 2 S. Pfeiffer 1 H. Schlarb 1 1 Deutsches Elektronen

More information

An Introduction to Model-based Predictive Control (MPC) by

An Introduction to Model-based Predictive Control (MPC) by ECE 680 Fall 2017 An Introduction to Model-based Predictive Control (MPC) by Stanislaw H Żak 1 Introduction The model-based predictive control (MPC) methodology is also referred to as the moving horizon

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

Systems and Control Theory Lecture Notes. Laura Giarré

Systems and Control Theory Lecture Notes. Laura Giarré Systems and Control Theory Lecture Notes Laura Giarré L. Giarré 2017-2018 Lesson 17: Model-based Controller Feedback Stabilization Observers Ackerman Formula Model-based Controller L. Giarré- Systems and

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

DIGITAL CONTROLLER DESIGN

DIGITAL CONTROLLER DESIGN ECE4540/5540: Digital Control Systems 5 DIGITAL CONTROLLER DESIGN 5.: Direct digital design: Steady-state accuracy We have spent quite a bit of time discussing digital hybrid system analysis, and some

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 7: State-space Models Readings: DDV, Chapters 7,8 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology February 25, 2011 E. Frazzoli

More information

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

LINEAR-QUADRATIC CONTROL OF A TWO-WHEELED ROBOT

LINEAR-QUADRATIC CONTROL OF A TWO-WHEELED ROBOT Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 67, No 8, 2014 SCIENCES ET INGENIERIE Automatique et informatique Dedicated to the 145th Anniversary of

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

1 Chapter 9: Design via Root Locus

1 Chapter 9: Design via Root Locus 1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2

More information

EL2450: Hybrid and Embedded Control Systems: Homework 1

EL2450: Hybrid and Embedded Control Systems: Homework 1 EL2450: Hybrid and Embedded Control Systems: Homework 1 [To be handed in February 11] Introduction The objective of this homework is to understand the basics of digital control including modelling, controller

More information

DIGITAL CONTROL OF POWER CONVERTERS. 2 Digital controller design

DIGITAL CONTROL OF POWER CONVERTERS. 2 Digital controller design DIGITAL CONTROL OF POWER CONVERTERS 2 Digital controller design Outline Review of frequency domain control design Performance limitations Discrete time system analysis and modeling Digital controller design

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/

More information

Overview of the Seminar Topic

Overview of the Seminar Topic Overview of the Seminar Topic Simo Särkkä Laboratory of Computational Engineering Helsinki University of Technology September 17, 2007 Contents 1 What is Control Theory? 2 History

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

A brief introduction to robust H control

A brief introduction to robust H control A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Exam in Automatic Control II Reglerteknik II 5hp (1RT495)

Exam in Automatic Control II Reglerteknik II 5hp (1RT495) Exam in Automatic Control II Reglerteknik II 5hp (1RT495) Date: August 4, 018 Venue: Bergsbrunnagatan 15 sal Responsible teacher: Hans Rosth. Aiding material: Calculator, mathematical handbooks, textbooks

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

CHAPTER 10: STABILITY &TUNING

CHAPTER 10: STABILITY &TUNING When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008 ECE504: Lecture 8 D. Richard Brown III Worcester Polytechnic Institute 28-Oct-2008 Worcester Polytechnic Institute D. Richard Brown III 28-Oct-2008 1 / 30 Lecture 8 Major Topics ECE504: Lecture 8 We are

More information

Final: Signal, Systems and Control (BME )

Final: Signal, Systems and Control (BME ) Final: Signal, Systems and Control (BME 580.) Instructor: René Vidal May 0th 007 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 3 p 1/21 4F3 - Predictive Control Lecture 3 - Predictive Control with Constraints Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 3 p 2/21 Constraints on

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information