Systems Analysis and Control
|
|
- Cassandra Nicholson
- 3 years ago
- Views:
Transcription
1 Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design
2 Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters T D, T I, et c. mass, damping, et c. Compensation via Root-Locus Introduction Pole-Zero Compensation Lead-Lag M. Peet Lecture 6: Control Systems 2 / 22
3 Generalized We may want to know the effect of changing other parameters. Examples: Physics (e.g. Suspension System) Spring Constant Damper Wheel Mass m c m w x x 2 u Circuits (e.g. Toaster, Video Surveillance) Resisters Capacitors Inductors Maybe there is no control at all! M. Peet Lecture 6: Control Systems 3 / 22
4 as a General Tool What do parameters do? Suspension system: The full TF: K 2 (m c s 2 + cs + K ) m c m w s 4 + c(m w + m c )s 3 + (K m c + K m w + K 2 m c )s 2 + ck 2 s + K K 2 The Effect of Damping Constant: c No Feedback Only examine c Everything else is. m c x x 2 G(s) = Where are the Poles? s 2 + cs + s 4 + 2cs 3 + 3s 2 + cs + s 4 + 2cs 3 + 3s 2 + cs + = s 4 + 3s c (2s 3 + s) = d(s) + c n(s) = m w Looks like the root locus! u M. Peet Lecture 6: Control Systems 4 / 22
5 as a General Tool What do parameters do? d(s) = s 4 + 3s 2 + n(s) = 2s 3 + s G(s) = s2 + cs + d(s) + c n(s) 2.5 The root locus is the set of roots of d(s) + kn(s).5.5 We plot the root locus for G c (s) = n(s) d(s) = 2s3 + s s 4 + 3s Note that G c is totally fictional! G c must still be proper (n is lower degree than d). The effect of changing c is small. M. Peet Lecture 6: Control Systems 5 / 22
6 as a General Tool Suspension Example: Damping Ratio Root locus tells us: Changing c won t help with overshoot. We need Feedback! m c x x 2 Set c = and plot the root locus m w u G(s) = Examine the gain at s 2 + s + s 4 + 2s 3 + 3s 2 + s + s = ı s2 = ı Find Crossover Points k = 3.58 k = 2.6 We ll want k = M. Peet Lecture 6: Control Systems 6 / 22
7 as a General Tool Suspension Example: Damping Ratio Closed Loop Transfer Function: kg(s) + kg(s) = k(s 2 + cs + ) k(s 2 + cs + ) + s 4 + 2cs 3 + 3s 2 + cs + Can damping ratio get us to 3% overshoot? With feedback Set k = 3 and plot root locus Closed Loop Transfer Function (k = 3): 3 2 G kc (s) = s 2 + cs + (s 4 + 6s 2 + 4) + c(2s 3 + 3s + s) Use rlocfind to pick off the best value of c. Choose the point s = ı. Yields c = d(s) n(s) = M. Peet Lecture 6: Control Systems 7 / 22
8 as a General Tool Suspension Example: Damping Ratio Using c =.44 and k = 3, the closed-loop transfer function is kg c (s) + kg c (s) = 3s s + 3 s s 3 + 6s s + 4 Which has repeated poles at s,2,3,4 =.7 ±.2ı Corresponds to an overshoot of.4.2 Step Response M p = e πσ ω = e.7 π.2 =.8 Amplitude The real overshoot is much bigger! Time (sec) M. Peet Lecture 6: Control Systems 8 / 22
9 as a General Tool DIY Example G(s) = s 2 + b 2 s + b s 3 + (7 + b)s 2 + (2 + b)s + b Find the optimal value of b. Im(s) Re(s) M. Peet Lecture 6: Control Systems 9 / 22
10 Limitations of isn t perfect Can only study one parameter at a time. What to do if root locus doesn t go where we want? The Suspension Problem: G(s) = s 2 + s + s 4 + 2s 3 + 3s 2 + s Adding a pole at the origin has a negative effect. 2.5 Question: Would adding a zero have a positive effect? M. Peet Lecture 6: Control Systems / 22
11 Limitations of The Inverted Pendulum:.8 G(s) = s We used PD feedback K(s) = k( + T D s) Puts a zero at s = T D Conclusion: Adding a zero at z = improves performance. Can we generalize this? M. Peet Lecture 6: Control Systems / 22
12 Adding Poles and Zeroes PID control PID feedback: K(s) = k ( ) + T i s + T Ds = k T Ds 2 + s + T I s Adds poles and zeros: Two zeros: z,2 = ± 4T D T I 2T D One pole: p = Question: Is there a systematic way to add poles and zeros? M. Peet Lecture 6: Control Systems 2 / 22
13 Adding Poles and Zeroes How? How To Add a Pole/Zero? What does it mean? Error e K Input u=ke G Output y=gu Constraint: The plant is fixed. G(s) doesn t change. The pole/zero must come from the controller. e.g. What is a Controller? A system Maps e(t) to u(t) M. Peet Lecture 6: Control Systems 3 / 22
14 Adding Poles and Zeroes Zeros Goal: Add a Zero Like PD control. Controller: K(s) = k(s + z) Input to Controller: ê(s) Output from Controller: û(s) = k(s + z) = ksê(s) + kzê(s) Time-Domain: u(t) = k e (t) + kz e(t) Problem: Requires differentiation. e (t) = e(t) e(t τ) τ M. Peet Lecture 6: Control Systems 4 / 22
15 Adding a Pole Goal: Add a pole Controller: K(s) = k s + p 2.5 Input to Controller: ê(s) Output from Controller: û(s) = s+pê(s) k Internal Variable: x. Frequency Domain Time-Domain (s + p)x(s) = ke(s) u(s) = x(s) ẋ(t) = px(t) + ke(t) u(t) = x(t) Adding a Pole: Requires us to construct a dynamical system whose output is the control. Easier than adding a zero, but less useful Zeros are better for attracting poles away from RHP. M. Peet Lecture 6: Control Systems 5 /
16 Pole-Zero Compensation The best way to modify the root locus is a using a pole-zero compensator. Adds a zero without differentiation K(s) = k s z s p Input to Controller: ê(s) Output from Controller: û(s) = k s pê(s) s z Doing long division: s z s p = + z p s p Im(s) Re(s) Hence û(s) = kê(s) + k z p s p ê(s) Internal Variable: ˆx(s) = k(z p) s p ê(s) M. Peet Lecture 6: Control Systems 6 / 22
17 Pole-Zero Compensation Internal Variable: ˆx(s) = k(z p) s p ê(s) Im(s) Frequency Domain: (s + p)x(s) = k(z p)e(s) u(s) = x(s) + kê(s) Re(s) Time-Domain: ẋ(t) = px(t) + k(z p)e(t) u(t) = x(t) + ke(t) Artificial Dynamics: Controller State: x(t) No differentiation of e(t)! A zero should always be combined with a pole. M. Peet Lecture 6: Control Systems 7 / 22
18 Lead Compensation Definition. A Lead Compensator is a pole-zero compensator where p < z. K(s) = s + z s + p Used when we really want a zero The pole has less effect than the zero. Im(s) Re(s) M. Peet Lecture 6: Control Systems 8 / 22
19 Lead Compensation Inverted Pendulum G(s) = s Figure : K(s) = k(s + ) Figure : K(s) = k s + s + 3 M. Peet Lecture 6: Control Systems 9 / 22
20 Lag Compensation Definition 2. A Lag Compensator is a pole-zero compensator where z < p. K(s) = s + z s + p Used when we really want a pole The zero has less effect than the pole. Doesn t increase the number of asymptotes. Im(s) Re(s) M. Peet Lecture 6: Control Systems 2 / 22
21 Lag Compensation Suspension Problem G(s) = s 2 + s + s 4 + 2s 3 + 3s 2 + s Figure : K(s) = k s 4 Figure : K(s) = k s + 5 s +. M. Peet Lecture 6: Control Systems 2 / 22
22 Summary What have we learned today? Generalized? What about changing OTHER parameters T D, T I, et c. mass, damping, et c. Compensation via Root-Locus Introduction Pole-Zero Compensation Lead-Lag Next Lecture: Pole-Zero Compensation and Notch Filters M. Peet Lecture 6: Control Systems 22 / 22
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 13: Root Locus Continued Overview In this Lecture, you will learn: Review Definition of Root Locus Points on the Real Axis
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 15: Root Locus Part 4 Overview In this Lecture, you will learn: Which Poles go to Zeroes? Arrival Angles Picking Points? Calculating
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
Dr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 2: Drawing Bode Plots, Part 2 Overview In this Lecture, you will learn: Simple Plots Real Zeros Real Poles Complex
Outline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
ECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
Procedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20)
Procedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20) 1. Rewrite the transfer function in proper p form. 2. Separate the transfer function into its constituent parts. 3. Draw the Bode
Lecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and
Design of a Lead Compensator
Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of
Control of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
Course Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques
2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
Methods for analysis and control of. Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March
EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 81-11 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
Control Systems. Root Locus & Pole Assignment. L. Lanari
Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root
Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
Control of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root
1 Controller Optimization according to the Modulus Optimum
Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)
EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open
Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e
Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented
Root Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
Root Locus Design. MEM 355 Performance Enhancement of Dynamical Systems
Root Locus Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline The root locus design method is an iterative,
The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.1-3, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)
1 Chapter 9: Design via Root Locus
1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
Methods for analysis and control of dynamical systems Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline
Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
Exam. 135 minutes, 15 minutes reading time
Exam August 15, 2017 Control Systems I (151-0591-00L) Prof Emilio Frazzoli Exam Exam Duration: 135 minutes, 15 minutes reading time Number of Problems: 44 Number of Points: 52 Permitted aids: Important:
SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a
EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
D(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
School of Engineering Faculty of Built Environment, Engineering, Technology & Design
Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang
Last week: analysis of pinion-rack w velocity feedback
Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s
INTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant
6.302 Feedback Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due
The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
Controls Problems for Qualifying Exam - Spring 2014
Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
Department of Electronics and Instrumentation Engineering M. E- CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I- BASICS AND ROOT-LOCUS DESIGN PART-A (2 marks) 1. What are the
Dynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
Positioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually
6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.
6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
Video 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
If you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback
Analysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
Automatic Control (TSRT15): Lecture 4
Automatic Control (TSRT15): Lecture 4 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Review of the last
Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013
Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox
Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus
ECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
Automatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward
ECEN 3741 Electromagnetic Fields 1
ECEN 3741 Electromagnetic Fields 1 Lecture Notes No. 1 Waves & Phasors Dr. Lin Sun Dept. of ECE Youngstown State University Youngstown, Ohio, 44555 Spring 2015 http://people.ysu.edu/~lsun/ecen3741 1 Chapter
Response to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215 - INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
APPPHYS 217 Tuesday 6 April 2010
APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra
Control Systems Design
ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:
ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8
Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).
ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not
Single-Input-Single-Output Systems
TF 502 Single-Input-Single-Output Systems SIST, ShanghaiTech Introduction Open-Loop Control-Response Proportional Control General PID Control Boris Houska 1-1 Contents Introduction Open-Loop Control-Response
Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:
Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Overview Review on Laplace transform Learn about transfer
CHAPTER 7 STEADY-STATE RESPONSE ANALYSES
CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli
Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)
Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop
Stability & Compensation
Advanced Analog Building Blocks Stability & Compensation Wei SHEN (KIP) 1 Bode Plot real zeros zeros with complex conjugates real poles poles with complex conjugates http://lpsa.swarthmore.edu/bode/bode.html
] [ 200. ] 3 [ 10 4 s. [ ] s + 10 [ P = s [ 10 8 ] 3. s s (s 1)(s 2) series compensator ] 2. s command pre-filter [ 0.
EEE480 Exam 2, Spring 204 A.A. Rodriguez Rules: Calculators permitted, One 8.5 sheet, closed notes/books, open minds GWC 352, 965-372 Problem (Analysis of a Feedback System) Consider the feedback system
Essence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop
Lecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review time-domain characteristics of 2nd-order systems intro to control: feedback open-loop vs closed-loop control intro to
Alireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
Feedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals
EE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
Transient Response of a Second-Order System
Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop
Index. Index. More information. in this web service Cambridge University Press
A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
MAE 143B - Homework 8 Solutions
MAE 43B - Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system
Input and Output Impedances with Feedback
EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators First-order active filters Second-order active filters Review from Last Time Input and Output Impedances
Chapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
MAE143 B - Linear Control - Spring 2018 Midterm, May 3rd
MAE143 B - Linear Control - Spring 2018 Midterm, May 3rd Instructions: 1. This exam is open book. You can consult any printed or written material of your liking. 2. You have 70 minutes. 3. Most questions
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods