UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS


 Shawn McLaughlin
 3 years ago
 Views:
Transcription
1 ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018 Time: am noon INSTRUCTIONS TO CANDIDATES: There are 6 questions. You are required to answer any 4 questions. All questions carry equal marks. Marks for parts of questions are shown in brackets. CANDIDATES REQUIRE : Property tables provided Formula Sheet (attached) Take density of water as 1000 kg/m 3
2 Page 2 of 10 Q1 (a)explain, helped by sketches, what amplitude, gain, phase and phase shift is and why frequency response is useful for bio mechatronic systems control. [8 marks] (b)the following graph shows a sinusoidal input and output of a system. Given the input frequency is 4 rad/sec, please determine the gain and phase. [4 marks] (c) Figure Q1(c) shows an open loop Bode plot. i) Estimate the gain margin and the phase margin. [4 marks] ii) Explain the functions of gain margin and phase margin in systems control. [4 marks] iii) Explain the system s Peak Resonance M p and Bandwidth. [3 marks] iv) Comment on the system s stability performance. [2 marks] Q1 continued over the page Please turn the page
3 Page 3 of 10 Figure Q1(c) A Bode Plot Q2 A simplified model of a Prosthesis limb system is shown in Figure Q2. The control system for the prosthesis limb dynamics is given by: G p (s) = 1 s(s + 5)(s + 3) Input (s) +  Prosthesis limb ControllerG c (s) Prosthesis limb Dynamics G p (s) Output (s) Measurement =1 Figure Q2 A Prosthesis limb a) If Gc(s) is a proportional controller only, find the range of the gain Kp making the system to be an underdamped system for unit step input. Q2 continued over the page [7 marks]
4 Page 4 of 10 Please turn the page 1 b) Find the Ki for a unit parabolic input (θi = s 3 steady state error is less than ) if Gc(s) is a PI controller and the c) The designer needs to achieve less than 20% overshoot and ts less than 5 seconds. Design a PID controller by determining Kp and Kd (using the Ki obtained from (b) above) to satisfy these requirements. [8 marks] d) Describe how the error item is handled by (i) proportional, (ii) integral and (iii) derivative controllers. Q3 (a) Using block diagrams, briefly explain discrete time signal processing for feedback and feedforward system. [6 marks] (b) Explain what is meant by a zeroorder hold (ZOH) system. [4 marks] (c) A controller has an 10 bit Analogue to Digital Converter with the signal range between 0 Volt to +24 Volt: (i) (ii) (iii) (iv) What is the resolution of the AD converter? What integer number represents a value of +12 Volts? What voltage does the integer 854 represent? What voltage does represent? [2 marks] [2 marks] [2 marks] [2 marks] (d) A controller of biomechatronic system consists of a Digital to Analogue Converter with zero order element in series with the processing centre which has a transfer function s G p (s) = (s + 2) Find the sampleddata transfer function, G (z) for the digital control system. The sampling time, T, is 1 seconds. [7 marks]
5 Page 5 of 10 Please turn the page Q4 Q5 a) Draw the equivalent circuit of an ideal operational amplifier including the assumed characteristics. b) Draw the circuit diagram of the implementation of an instrumentation amplifier using three operational amplifiers. [10 marks] c) Derive an expression for an instrumentation amplifier using three operational amplifiers. [10 marks] a) What is meant by the half power point in relation to filters? b) If a voltage of 12Vrms is input to a system and the output produced is 1.2Vrms. What is the gain of the system in db? c) A passive low pass filter can be constructed from a single resistor and capacitor. i) Draw the circuit diagram for a passive Low Pass filter and derive an equation for the gain v out v in.. ii) iii) Design the filter to have a cutoff frequency of 1000Hz. The Resistor should have a value between 100 Ohms and 1000 Ohms. Calculate the gain at appropriate frequencies and hence plot the bode diagram (magnitude only) for the circuit.
6 Page 6 of 10 Please turn the page Q6 a) Memory used in microprocessor systems can be divided into two basic types, volatile and nonvolatile. Describe these two basic types of memory and explain how each one is used. [10 marks] b) Show using a diagram the two computer architectures used in computer systems. Describe the advantages and disadvantages between the two systems. [10 marks] c) Describe the term Special Function Register in relation to a PIC microcontroller. Blocks with feedback loop END OF QUESTIONS PLEASE SEE BELLOW FOR FORMULAE SHEETS Formula Sheets G(s) = G(s) = G o (s) 1 + G o (s)h(s) G o (s) 1 G o (s)h(s) (for a negative feedback) (for a negative feedback) SteadyState Errors e ss = lim s 0 [s(1 G o (s))θ i (s)] (for an open loop system) e ss = lim s 0 [s G o (s) θ i(s)] (for the closed loop system with a unity feedback) e ss = lim s 0 [s e ss = lim s 0 [ s 1 θ G (s) i (s)] (if the feedback H(s) 1) 1 + G 1 (s)[h(s) 1] G 2 (s) 1 + G 2 (G 1 (s) + 1) θ d(s)] (if the system subjects to a disturbance input)
7 Page 7 of 10 PLEASE TURN THE PAGE FOR MORE FORMULAE SHEETS First order Systems G(s) = θ o θ i = G ss(s) τs + 1 τ ( dθ o dt ) + θ o = G ss θ i t τ θ o = G ss (1 e ) (for a unit step input) t τ θ o = AG ss (1 e ) (for a step input with size A) θ o = G ss ( 1 ) e (t τ ) (for an impulse input) τ Second order Systems d 2 θ o dt 2 + 2ζω n dθ o dt + ω n 2 θ o = b o ω n 2 θ i G(s) = θ 2 o(s) θ i (s) = b o ω n s 2 + 2ζω n s + ω2 n ω d t r = 1/2π ω d t p = π p.o.= exp( ζπ (1 ζ 2 ) ) 100% t s = 4 ζω n ω d = ω n (1 ζ 2 )
8 Page 8 of 10 PLEASE TURN THE PAGE FOR MORE FORMULAE SHEETS
9 Page 9 of 10 PLEASE TURN THE PAGE FOR MORE FORMULAE SHEETS
10 Page 10 of 10 END OF FORMULAE SHEETS
UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS
ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1EXAMINATION 2017/2018
ENG00 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 07/08 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: 8 January 08 Time: 0.00.00
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016
TW2 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016 ADVANCED CONTROL TECHNOLOGY MODULE NO: EEM7015 Date: Monday 16 May 2016
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017
UNIVERSITY OF BOLTON TW16 SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017 ADVANCED CONTROL TECHNOLOGY MODULE NO: EEM7015 Date: Monday 15 May 2017
More informationPID controllers. Laith Batarseh. PID controllers
Next Previous 24Jan15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017
UNIVERSITY OF BOLTON TW30 SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 06/07 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: Thursday Jauary 07 Time:
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationLABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA EXPERIMENT NO : CS II/ TITLE : FAMILIARIZATION
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationSAMPLE EXAMINATION PAPER (with numerical answers)
CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationConventional PaperI Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy
EEConventional PaperI IES01 www.gateforum.com Conventional PaperI01 Part A 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy impedance for a lossy dielectric
More informationExercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31317 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
More informationSolution for Mechanical Measurement & Control
Solution for Mechanical Measurement & Control December2015 Index Q.1) a). 23 b).34 c). 5 d). 6 Q.2) a). 7 b). 7 to 9 c). 1011 Q.3) a). 1112 b). 1213 c). 13 Q.4) a). 1415 b). 15 (N.A.) Q.5) a). 15
More informationChapter 5 HW Solution
Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, timeinvariant system. Let s see, I
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018
ENG009 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING INTERMEDIATE ELECTRICAL PRINCIPLES & ENABLING POWER ELECTRONICS MODULE NO: EEE5003 Date: 15 January 2018 Time: 10.00 12.00
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationDigital Control: Summary # 7
Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationDepartment of Electronics and Instrumentation Engineering M. E CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I BASICS AND ROOTLOCUS DESIGN PARTA (2 marks) 1. What are the
More informationQ. 1 Q. 25 carry one mark each.
Q. Q. 5 carry one mark each. Q. Consider a system of linear equations: x y 3z =, x 3y 4z =, and x 4y 6 z = k. The value of k for which the system has infinitely many solutions is. Q. A function 3 = is
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017
UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 22016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTRONICS ENGINEERING
More information10ES43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A
10ES43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationGoals for today 2.004
Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationHomework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuoustime active filters. (3 points) Continuous time filters use resistors
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2018 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)
s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 202/203 XE2 ENGINEERING CONCEPTS (Test) Time allowed: TWO hours Answer: Attempt FOUR questions only, a maximum of TWO questions
More informationEC CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING
EC 2255  CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationOutline. Classical Control. Lecture 2
Outline Outline Outline Review of Material from Lecture 2 New Stuff  Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2017 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationEECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16
EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationPositioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pickandplace robot to move the link of a robot between two positions. Usually
More information7.2 Controller tuning from specified characteristic polynomial
192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm1 Exam (Solution)
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm1 Exam (Solution) ECE6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More informationUNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018
ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.
More informationFrequency Dependent Aspects of Opamps
Frequency Dependent Aspects of Opamps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and noninverting amplifier circuits with resistive
More informationObjective: To study P, PI, and PID temperature controller for an oven and compare their performance. Name of the apparatus Range Quantity
Objective: To study P, PI, and PID temperature controller for an oven and compare their. Apparatus Used: Name of the apparatus Range Quantity 1. Temperature Controller System 1 PID Kp (010) Kd(020) Ki(00.02)
More informationAcceleration Feedback
Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro Mechanics Electrical Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic
More informationINDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017
1. The signal m (t) as shown is applied both to a phase modulator (with kp as the phase constant) and a frequency modulator with ( kf as the frequency constant) having the same carrier frequency. The ratio
More informationUnit 8: Part 2: PD, PID, and Feedback Compensation
Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:
More informationECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
More informationECE137B Final Exam. Wednesday 6/8/2016, 7:3010:30PM.
ECE137B Final Exam Wednesday 6/8/2016, 7:3010:30PM. There are7 problems on this exam and you have 3 hours There are pages 132 in the exam: please make sure all are there. Do not open this exam until
More informationMassachusetts Institute of Technology Department of Mechanical Engineering Dynamics and Control II Design Project
Massachusetts Institute of Technology Department of Mechanical Engineering.4 Dynamics and Control II Design Project ACTIVE DAMPING OF TALL BUILDING VIBRATIONS: CONTINUED Franz Hover, 5 November 7 Review
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationEECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:
EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete
More informationUNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) MECHANICAL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016
UNIVERIY OF BOLON OCD5 WEERN INERNAIONAL COLLEGE FZE BENG (HON) MECHANICAL ENGINEERING EMEER ONE EXAMINAION 05/06 ADVANCED HERMOFLUID & CONROL YEM MODULE NO: AME 6005 Date: aturday 6 January 06 ime: :00
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationEE 4343/ Control System Design Project LECTURE 10
Copyright S. Ikenaga 998 All rights reserved EE 4343/5329  Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phaselead and Phaselag compensators using
More informationFirst and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015
First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More information