(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:


 Brett Palmer
 3 years ago
 Views:
Transcription
1 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4. (ii) Determine the value of K so that the Gain margin of the system is 20 db. (iii) Determine the value of K so that the phase margin of the system is 60 degrees. (b) A unity feedback system is characterized by the transfer function G(S) = Design a suitable compensator to meet the following specifications: (i) Settling time for 2% tolerance, band = 4 sec (ii) Steady state error for ramp input 10%.(1990) 2. Draw the root locus diagram for the following control system and calculate the breakin and breakaway points..(1992) 3. Sketch the desirable range of the location of the poles of the transfer function of a system s damping ratio is to lie between 0.3 and 0.7 and its natural frequency is to lie between 2 and 4rad/sec..(1993) 4. Draw a signal flow graph for the following equations: x 2 = t 12 x 1 + t 32 x 3 x 3 = t 23 x 2 + t 43 x 4 x 4 = t 24 x 2 + t 34 x 3 + t 44 x 4 x 5 = t 25 x 2 + t 45 x 4 5. Consider a feedback control system with the open loop transfer function G(s) = Design a series compensator to provide the following specification:.(1993)
2 (i) The phase margin of the system must be greater than (ii) When the input to the system is a ramp, the steady state error of the output in position should be less then 0.1 degree/deg/sec of the final output velocity..(1993) 6. The open loop transfer function of a system is given below: G(s) H(s) = For what values of K is the system stable?.(1994) 7. (a) The system shown below consists of a unity feedback loop containing a minor rate feedback loop. (i) (ii) Without any rate feedback (b = 0), determine the damping factor, natural resonant frequency, overshoot of the system to a unit step input, and the steady state error resulting from a unit ramp input. Determine the rate feedback constant which will increase the equivalent damping factor of the system to 0.8. Determine the overshoot of the system in this case to a unit step input and the steady state error resulting from a unit ramp input. (b) Using Bode plots, determine the gain margin and phase margin of a unit feedback system having an open loop transfer function: G(s) = By what constant factor should G(s) be multiplied for (i) a gain margin 20 db, and (ii) a phase margin of 24 0.(1994) 8. (a) Sketch the rootlocus of a unity feedback system with an openloop transfer function
3 G(s) = For what range of k will the system have damped oscillatory response? What is the highest value of k that can be used before continuous oscillations occur? (b) Consider the third order position control system with velocity feedback shown below. Determine the value of k so that the dominant poles of the transfer function of the closed loop system have a damping ratio of 0.5. What will be the response of the system to a unit step input for this value of k?.(1995) 9. Determine the value of k so that all the roots of the following polynomial are to the left of the line = F(s) = s 3 + 6s s + k.(1996) 10. Sketch the constantm loci in the Gplane for a unity feedback system and derive the equations for the loci..(1996) 11. (a) Find the output in the following block diagram having three input: R, U 1 and U 2. (b) Enumerate the advantages of state space modeling Derive relations to find the poles and zeros of a system from the state space model. Determine the poles and zeros of the following system: X = X + C = [175]X + [1]r.(1996)
4 12. Obtain the transfer function for the multiloop control system shown..(1997) 13. A unity feedback control system has a forward transfer. Find the resonance peak and the corresponding frequency for the closed loop frequency response. Derive the formula you used..(1997) 14. For open loop transfer function A(s) = a negative feedback is applied with a feedback factor β. Find the value of βa, (i) corresponding to the breakaway point, (ii) for which the system becomes unstable..(1998) 15. (a) The open loop transfer function of a unity feedback control system is G(s) = Construct the rootlocus diagram of the system and comment on the stability of the system..(1998) (b) For a proportional plus derivative (PD) controller plot the controller output and error vs time. Specify the equation for the controller..(1998) 16.
5 A dynamic vibration absorber is shown in the above figure. The system is seen in many situations involving machines containing several unbalanced components. The parameters M 2 and K 12 may be chosen such that the main Mass M 1 does not vibrate when F(t) = a sin ω 0 t. (a) Obtain the differential equation describing the system. (b) Draw the analogous electric circuit based on Force current analogy. (c) What is the condition for Mass M 1 not vibrating at frequency ω 0..(1999) 17. (a) Explain gain margin and phase margin from Nyquist diagram. (b) A closed loop transfer function of a unity feedback control system is = Determine the response of the system when the excitation applied to the input terminal is.(1999) (d) For the system shown below, determine the characteristic equation. Hence, find the following the excitation is a unit step: (i) Undamped natural frequency (ii) Damped frequency of oscillation (iii) Dampling ratio and damping factor (iv) Maximum overshoot (v) Setting time (vi) Number of cycles completed before the output is settled within 2%, 5% of its final value (vii) Time interval after which maximum and minimum will occur..(1999)
6 18. (i) Write the transfer function of a PID controller and state the effect of integral control on the performance of the system. (ii) A closed loop system has G(s) = and H(s) =1/s. Draw the Nyquist path for analyzing the stability of the system. 19. A second order control system with proportional derivative controller is shown in figure. Derive expression for its (i) steady state error to velocity input (ii) natural frequency of oscillation (iii) damping ratio in terms of the system parameters. 20. By analytical method calculate the gain margin in db of the unity feedback control system with transfer function..(2000) G(s) =.(2000) 21. For the mechanical system shown in Figure write the differential equation representing the system. Draw an integrator based electronic circuit to simulate this mechanical system to study the variations of x for different value of the parameters. Symbols used have their usual meaning..(2001) 22. (a) A control system is represented by the block diagram of figure. Find its characteristic equation using block diagram reduction technique. (b) Calculate its damping factor and undamped natural frequency for k V = 10. (c) What should be the value of k v for critical damping?
7 (d) For k V = 10, find the expression of C(t) and obtain the time at which first overshoot occurs. Also find the peak overshoot magnitude. 23. (a).(2001) Determine the value of k and velocity feedback constant k v so that the maximum overshoot in the unit step response is 0.2 and the peak time is 1 sec. With these values of k and k v, obtain the rise time and settling time. (b) Consider a closed loop system whose loop transfer function is G(s) H(s) = Determine the maximum value of the gain k for stability as a function of dead time T..(2002) 24. (a) Consider a control system with characteristic equation s(s + 4) (s 2 + 2s + 2) + K(s + 1) = 0 Draw the complete root loci labeling important values. Also find the angles of asymptotes and the intercept of asymptotes. (b) Consider a third order system with characteristic equation s s x 10 6 s+1.5 x 10 7 K = 0.
8 Find the critical value of K for stability using RouthHurwitz criterion. Also find the undamped frequency corresponding to the zero input response and the critical value of K..(2003) 25. For a singleloop feedback control system G(s) = and H(s) = Evaluate the steady state errors for three basic types of inputs. 26. (a) A three term controller is described by the equation (t) = 20 Where e(t) = system error (t) = controller output T r = reset time T d = derivative time This is used to control a process with transfer function G(s) = unity.(2003) feedback is used. (i) If integral action is not employed, find the derivative time required to make the closedloop damping ratio unity. (ii) If this value of derivative time is maintained, determine the minimum value of reset time that can be used without instability arising. (b) Consider the following control system (i) Sketch the root locus diagram for 0 < K <. (ii) Determine the value of K that gives the system characteristic equation a damping ratio of 0.5..(2004) 27. A phase lead compensator has a transfer function G(s) = Determine the maximum value of the phase lead and the frequency at which it occurs. Sketch the Bode diagram for this network..(2004) 28. (a) Construct a signal flow graph for the following equations and evaluate y 5 /y 1 : y 2 = a 12 y 1 + a 32 y 3
9 y 3 = a 33 y 2 + a 43 y 4 y 4 = a 24 y 2 + a 34 y 3 + a 44 y 4 y 5 = a 25 y 2 + a 45 y 4 (b) The characteristic equation of a closed loop control system is s 3 + 3Ks 2 + (K+1)s +4 = 0 Find the range of K for which the system is stable. Shown all steps clearly..(2005) 29. (a) Consider a mechanical system as shown. Write the force equations and draw a fully labeled state diagram. (b) An amplifier with an open loop voltage gain of 500 delivers 10 W of output power at 5% second harmonic distortion when the input signal is 5 mv. If 20dB negative voltage is to remain 10 W, determine (i) the required input signal strength, and (ii) the percent second harmonic distortion..(2005) 30. State and explain the terms gain margin and phase margin. With neat sketches, explain how you can obtain gain margin and phase margin from Nyquist diagram and Bode plot..(2006) 31. (a) Find the value of gain k for the feedback control system shown in figure, such that the system will be underdamped and will respond with 16% overshoot. Then calculate the following parameters of the system: (i) Undamped natural frequency (ii) Damping ratio, (iii) Time required to reach the first maximum or peak, T p (iv) Time required for the transient to reach within 2% of the steadystate value, i.e., settling time, T s (v) Damped natural frequency, ω d.
10 (b) using the rootlocus technique, discuss the stability of unity feedback firstorder and secondorder control system of gain k..(2006) 32. Draw the asymptotic Bode diagram for G(s) = and determine the value of G(j1000). 33. A unity feedback system has a forward has a forward loop transfer function:.(2006) G(s) = Determine: (i) the range of k for closedloop system stability, (ii) the frequency of oscillations when the system is marginally stable..(2007) 34. (a) A closedloop system is represented by = 144e where, e = r0.5c is the actuating signal. Find the value of the damping ratio, damped and undamped frequency of oscillations. Draw the block diagram of the system. (b) A system employing a proportional and an errorrate control is hsown in the figure. Determine (i) the errorrate factor k e, so that the damping ratio is 0.5; (ii) the settling time, maximum overshoot and steadystate error for unit ramp input..(2007) 35. (i) For the system shown in the figure, obtain the values of k and a, to satisfy, M r = 1.04 and ω r = rad/sec. (ii) A unity feedback system has an openloop transfer function G(s) = Determine the steadystate error for r(t) = 3 +10t..(2007)
11 36. Determine the open loop transfer function, G(s) H(s), of a feedback control system whose BodePlot s magnitude characteristic is shown in the figure..(2008) 37. (a) If a unity feedback system having G(s) = is critically stable and oscillates with a frequency of 2.5 rad/sec, calculate the corresponding values of K and p. (b) For the block diagram of a unity feedback control system, define: (i) the steady error for K = 400 and unit ramp input. (ii) the value of K for which the steady state error for unit input will be (c) For the tachometer feedback control system shown in the figure. Determine the value of Kb to make the system s damping ratio equal to 0.8. Calculate the corresponding peak time, peak overshoot, damped frequency and settling time taking 2% of the steady state valued..(2008)
12 38. The openloop transfer function of a unity feedback system is G(s) =, where K and T are positive constants. How many times the gain of the system, K s should be increased the peak overshoot from 40% to 60%?.(2008) 39. (a) Explain the difficulties involved in the application of RouthHurwitz criterion and also bring out limitations. Find the stability of the control system whose characteristic equation is given by: (s1) 2 (s+2)(s+1) = 0. (b) Explain the effect of additional poles and zeros of G(s) H(s) on the shape of the Nyquist plot. Sketch the Nyquist diagram and determine stability of the transfer function: (i) G(s) H(s) = (ii) G(s) H(s) = (c) Obtain the overall transfer function C/R from the signal flow graph.(2009)
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More information10ES43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A
10ES43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationEC CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING
EC 2255  CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationController Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationEEE 184 Project: Option 1
EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More informationControl Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho kwangho@hansung.ac.kr Tel: 027604253 Fax:027604435 Introduction In this lesson, you will learn the following : The
More informationEC6405  CONTROL SYSTEM ENGINEERING Questions and Answers Unit  I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More informationDepartment of Electronics and Instrumentation Engineering M. E CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I BASICS AND ROOTLOCUS DESIGN PARTA (2 marks) 1. What are the
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationControl Systems. EC / EE / IN. For
Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationFATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY
FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai  625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION
More informationModule 3F2: Systems and Control EXAMPLES PAPER 2 ROOTLOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOTLOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the rootlocus
More informationPID controllers. Laith Batarseh. PID controllers
Next Previous 24Jan15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time
More informationProblems XO («) splane. splane *~8 X 5. id) X splane. splane. * Xtg) FIGURE P8.1. jplane. JO) k JO)
Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 XO
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationCONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
More informationEC 8391CONTROL SYSTEMS ENGINEERING. Questions and Answers PARTA. Unit  I Systems Components And Their Representation
EC 8391CONTROL SYSTEMS ENGINEERING Questions and Answers PARTA Unit  I Systems Components And Their Representation 1. What is control system? A system consists of a number of components connected together
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationCONTROL * ~ SYSTEMS ENGINEERING
CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control
More informationSECTION 5: ROOT LOCUS ANALYSIS
SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTRONICS ENGINEERING
More informationC(s) R(s) 1 C(s) C(s) C(s) = s  T. Ts + 1 = 1 s  1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain
analyses of the step response, ramp response, and impulse response of the secondorder systems are presented. Section 5 4 discusses the transientresponse analysis of higherorder systems. Section 5 5 gives
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationSolution for Mechanical Measurement & Control
Solution for Mechanical Measurement & Control December2015 Index Q.1) a). 23 b).34 c). 5 d). 6 Q.2) a). 7 b). 7 to 9 c). 1011 Q.3) a). 1112 b). 1213 c). 13 Q.4) a). 1415 b). 15 (N.A.) Q.5) a). 15
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationCompensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S
S 0 L U T I 0 N S Compensation 8 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. As suggested in Lecture 8, to perform a Nyquist analysis, we
More informationLecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore A Fundamental Problem in Control Systems Poles of open
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
More informationLecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationSubject: BT6008 Process Measurement and Control. The General Control System
WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005006 Subject: BT6008 Process Measurement and Control Semester:
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationK(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
More informationCHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closedloop system is closely related to the location of the closedloop poles. If the system
More informationNyquist Stability Criteria
Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc  Funded by MHRD This Lecture Contains Introduction to
More informationContents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 OpenLoop
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : RouthHurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016
TW2 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016 ADVANCED CONTROL TECHNOLOGY MODULE NO: EEM7015 Date: Monday 16 May 2016
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationCh 14: Feedback Control systems
Ch 4: Feedback Control systems Part IV A is concerned with sinle loop control The followin topics are covered in chapter 4: The concept of feedback control Block diaram development Classical feedback controllers
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More informationCO Statement. Book No [Page No] C C C C
IC6501 CONTROL SYSTEMS L T P C 3 1 0 4 OBJECTIVES: To understand the use of transfer function models for analysis physical systems and introduce the control system components. To provide adequate knowledge
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More information