# Alireza Mousavi Brunel University

Size: px
Start display at page:

Transcription

1 Alireza Mousavi Brunel University 1

2 » Control Process» Control Systems Design & Analysis 2

3 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched on or off. Closed-Loop Control: A continuous exercise of monitoring a condition (comparing the output of the system with a specified condition) and conducting an action to reduce the error. For example an air-conditioning system that keeps the temperature/humidity at a specified level. Control modes: A way that controllers react to an error signal. 3

4 » Process Control is all about controlling a defined operation or condition, either by time factors or events.» For example an automated production line in a factory that follows a specific sequence of operations to complete the assembly of a part.» With time based (clock-based) systems specific actuation (activity) is stipulated. With an event-based system a specific event should occur e.g. a sensor detecting a product on a production line that switches the conveyor on.» Therefore a control system requires to monitor a situation and measure the output variable compare with a desired variable. Feedback The difference is a measure of the error in the system. 4

5 General Block Diagram Definitions for Control Systems R s + - E(s) = R(s)-C(s) G s C s H s R(s) : system input some measure of desired output C(s) : system output actual output of dynamical process G(s) : forward-path transfer function H(s) : feedback transfer function if H(s) = 1 have a unity feedback system (important practical) G(s).H(s) : open-loop transfer function (OLTF) total TF around the loop if it is broken at any point. E(s) : Error 5

6 Therefore; = G(s) 1+G(s) C(s) R(s) = E s = R s C s = R s G(s) 1 + G s H(s) for unity feedback function R s G s 1 + G s = G s R(s) Error is shown to be dependent on the input R(s) 6

7 » A closed-loop system uses the measurements of the system output and compares it to the expected (desired) value of the system to generate the error signal.» The error signal occurs when a control variable changes (value/state).» When the change occurs there is likely to be a transient effects, which die away in time.» The term Steady-State is used for the difference between the desired set value input and output after the transient period dies away. 7

8 The primary reasons for using feedback are:» to reduce sensitivity of the closed-loop performance to parameter variations and imperfections of the plant model.» to reduce sensitivity of the closed-loop performance to disturbance inputs and noise. Considerations when designing feedback control systems:» reducing steady state errors» improving transient response 8

9 Consider the general feedback system: Input u + Forward transfer Function Output y - Feedback signal Feedback TF The Open-Loop TF = G(s)H(s) The root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter (i.e. gain within a feedback system).» Mainly used for stability criterion Walter R. Evans (1948) which can determine stability of the system.» The root locus plots the poles of the closed loop transfer function as a function of a gain parameter. 9

10 » loop gain is the sum of the gain expressed as a ratio» Feedback loops are widely used in electronics in amplifiers and oscillators, and more generally in both electronic and nonelectronic industrial control systems to control industrial plant and equipment. 10

11 » The Overall closed-loop TF: Y(s) U(s) = G(s) 1 + G s H(s) The closed-loop poles are the roots of the characteristic equation: 1 + G s H s = 0» Stability of a closed-loop system depends on the poles and the zeros of the loop TF.» The root locus show how these poles move in the s-plane when parameter of G(s)H(s) changes. Normally this parameter is the root locus gain K 11

12 » Root locus can be plotted by varying any of the parameters of the system and solving the corresponding closed-loop characteristic equation.» Most computer programs use this method.» For preliminary analysis a rough sketch suffices, only critical for important parameters and the roots to be accurate. Some rules: 1 + G s H s = 0 or GH = -1 Since the GH can be expressed as a ratio of two monic polynomials (c n x n + c n 1 x n 1, + c 0 ); (i.e. c n = 1), then: K N(s) D(s) = 1 or KN s + D s = 0 N(s) : numerator polynomial of the loop TF D(s): denominator polynomial of the loop TF K: loop gain 12

13 The polynomials can be factorised, so: Or K s z 1 s z 2 (s z m ) s p 1 s p 2 (s p n ) = 1 s p 1 s p 2 s p n + K(s z 1 )(s z 2 ) (s z m ) = 0 Where: z i = a zero of the loop of the TF p i = a pole of the loop of the TF m= the order of the numerator polynomial=number of zeros of GH n= the order of the denominator polynomial = number of poles of GH 13

14 Consider G s H s = K s+1 The open-loop pole s = -1 The closed-loop pole is determined by 1 + K Or s = 1 K s+1 = 0 s K = 0 The root locus diagram for various K=0, K=3 and K=9 j K = 9-10 K = 3-4 s - plane -1 By increasing the K the pole moves to the left the time constant of the closed-loop system decreases continuously 14

15 Consider G s H s = K (s+1)(s+5) The open-loop pole s = -1, -5 The closed-loop pole is determined by 1 + K (s+1)(s+5) = 0 s 2 + 6s K The root locus diagram for: K = 3 : s = 2, 4, K = 4 s = 3, 3 K = 5 s = 3 ± j j K = 4 K = 5 K = 3 +j j 15

16 Refer to W. de Silva, Modelling and Control of Engineering Systems, (2009), pp

17 The general open-loop TF can be expressed as: m i=1(s + z i ) G s H s = K n i (s + p i ) Where z i are the open-loop system zeros, and p i are the open-loop systems poles. K is the root locus gain. The closed-loop character equation can be expressed as: 1 + K m i=1 n i=1 (s+z i ) (s+p i ) = 0 or K s+z 1 s+z 2 (s+z m ) = 1 s+p 1 s+p 2 (s+p n ) So any point on the root locus must satisfy the magnitude and phase condition: K s z 1 s z 2 s z m = 1 s p 1 s p 2 s p n n n The phase angle: i=1 s p i i=1 s z i = π + 2πr r = 0, ±1, ±2, 17

18 » Computer packages (e.g. MATLAB) for plotting the root - locus are now readily available, but it is important to know the basic rules for sketching the loci.» Manual plotting of the root - locus diagram is considerably eased by a series of rules which give a good indication of the shape of the loci. 1. The loci start (i.e. K = 0 ) at the n poles of the open-loop TF G s H(s) 2. The number of loci is equal to the order of the Character Equation. (The plot is symmetrical about the real axis of the s-plane.) 3. The root loci end (i.e. K ) at the m zeros of G s H(s), and if m < n (usual) then the remaining n - m loci tend to infinity. 4. Portions of the real axis are sections of a root locus if the number of poles and zeros lying on the axis to the right is odd. 5. Those loci terminating at infinity tend towards asymptotes at angles relative to the positive real axis given by: π, 3π, (n m) (n m) 5π {2 n m 1}π,, (n m) (n m) 18

19 Examples excess pole 4 excess poles 6. The intersection of the asymptotes on the real axis occurs at the 'centre of gravity' of the pole - zero configuration of G s H(s), i.e. at poles of G s H s zeros of G s H s s n m 7. The intersection of the root - loci with the imaginary jω axis can be calculated by Routh - Hurwitz or geometrical analysis (only on some plots). 8. The breakaway points (points at which multiple roots of the characteristic polynomial occur) of the root locus are the solutions of dk ds = 0 (not all the solutions are necessarily breakaway points.) 19

20 G s H s K s p 1 j p 1 G s H s K s z 1 s p 1 j z 1 p 1 G s H s K s p 1 s p 2 j p 2 p 1 G s H s K s z 1 s p 1 s p 2 j z 1 p 2 p 1 20

21 G s H s K s z 1 s p 1 s p 2 j p 2 z 1 p 1 G s H s K s z 1 s p 1 s p 2 p 1 j z 1 p 2 G s H s K s p 1 s p 2 s p 3 j p 3 p 2 p 1 G s H s K s z 1 s p 3 s p 1 s p 2 j z 1 p 3 p 2 p 1 21

22 Heat Supply Kiln Temperature The are a number of ways in which a control system can react to an error signal and correct the error by supplying an output. 1. The two-step mode: The controller is just a switch (e.g. thermostat) activated by an error signal e.g. temperature becoming higher than desired. Control Switch Heat Supply on off t on off t 22

23 » This example is a single temperature setting. So it almost continuously switches the thermostat on off. A better solution would be to have two temperature settings and the heater is switched on at a lower value and switched off when the kiln reaches a specified temperature.» With two step mode, the controller output is either on or off signal, regardless of the magnitude of the error. 23

24 In case of proportional control mode, the response of the controller is determined by the magnitude of error. The correction signal is proportional to the size of correction required. Therefore: Controller output = K p e Where K p is a constant and e is the error. The Laplace Transforms: Controller Output (s) = K p E(s) TF of the controller 24

25 Consider unity feedback controller with a controller D(s) in forward path.» using the output value of the system to help us prepare the next output value. In this way, we can create systems that correct errors.» here with Proportional control we have a gain element with TF of D s = K p with forward path element of G(s) R s + - E s D s controller U s G s plant C s The error is therefore: E s = K pg s 1 + K p G s R(s) This is a basic feedback structure. Here, we are using the output value of the system to help us prepare the next output value. In this way, we can create systems that correct errors. Here we see a feedback loop with a value of one. We call this a unity feedback. 25

26 R s + - E s D s controller U s G s plant C s The controller is to be designed to achieve desired CL characteristics» steady state response (specified steady state error)» transient response (settling time, overshoot)» U(s) is termed the control signal (i.e. the output of the controller and input to the plant)» U(s) is proportional to the error E(s) For a step input the steady state error e SS : e SS = lim s se s = lim s 0 s /K p G(s) s 26

27 Consider a unity feedback system with a controller D(s) in the forward path: R s + - E s D s controller U s G s plant C s The controller is to be designed to achieve desired CL characteristics» steady state response (specified steady state error)» transient response (settling time, overshoot) U(s) is the control signal (the product of the output of the controller and input to the plant) When D(s) = K p (a constant of proportionality) i.e. U(s) is proportional to error E(s) Proportional Control Note: the effect on the closed loop poles is given by the root locus 27

28 In case of Derivative mode of control the controller output is proportional to the rate of change in error signal in time: Controller Outpt = K D de dt K D is the constant of proportionality. Therefore, the TF is obtained by the Laplace transform: Controller Outpt(s) = K D se(s) Where the TF is K D s 28

29 Controller output Error Constant rate of change of error 0 Time Time On the derivative control:» Once the error signal changes the controller output signal can be large (it is proportional to rate and not the value of the error)» The controller output is constant because rate of change is constant.» Derivative controllers do not respond to steady-state error signals, because with steadystate error the rate of change in time is zero (i.e. constant) due to this derivative controllers are always combined with proportional control. (the proportional control responses to all error signals including the steady-state) 29

30 Controller output Error The Controller output for PD controller can be given by: de Controller Output = K p e + K D dt Proportionality constant Rate of error change Derivative constant The system has a TF that can be given by: Controller output s = K p E s + K D se(s) The TF is K p + K D s that can be written as: 0 Constant rate of change of error Time TF = K D (s + 1 T D ) T D is the derivative time constant T D = K D KP Proportional Derivative 30 Time

31 In the integral mode of control the rate of change of the output control is proportional to the input error signal: di dt = K Ie Where K I is the constant of proportionality (1/s) by integrating both sides of the above equation: I out I 0 di = 0 t I out I 0 = K I edt 0 t K I edt Controller output at t=0 31

32 Controller output Error The TF is obtained by taking the Laplace transform: I out I 0 s = 1 s K IE(s) The Transfer function = 1 s K I 0 Time Time 32

33 A combination of the proportional, integral and derivative offers the threemode controller or the PID controller: controller output = K p e + K I edt + K D de dt Taking the Laplace transform gives: controller output s = K p E s + 1 s K IE s + sk D (s) Therefore, the TF: Transfer function = K p e + 1 s K I + sk D Further reading: W. Bolton, Mechatronics: electronic control systems in mechanical and electrical engineering, the 4 th edition

### Chapter 7 : Root Locus Technique

Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

### 7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

### ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8

Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by

### SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

### (b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

### School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

### CHAPTER # 9 ROOT LOCUS ANALYSES

F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

### ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

### Introduction to Root Locus. What is root locus?

Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

### ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

### Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

### Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

### Lecture 1 Root Locus

Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

### Software Engineering 3DX3. Slides 8: Root Locus Techniques

Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

### I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF

EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

### a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

### CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

### EEE 184: Introduction to feedback systems

EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

### Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

### Module 07 Control Systems Design & Analysis via Root-Locus Method

Module 07 Control Systems Design & Analysis via Root-Locus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March

### VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

### AN INTRODUCTION TO THE CONTROL THEORY

Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

### Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

### Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

### Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### Root Locus Methods. The root locus procedure

Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

### Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering

Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.

### Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

### Dr Ian R. Manchester

Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

### Control Systems. EC / EE / IN. For

Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop

### Analysis and Design of Control Systems in the Time Domain

Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

### Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07

Root locus Analysis P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: Mr Chaitanya, SYSCON 07 Recap R(t) + _ k p + k s d 1 s( s+ a) C(t) For the above system the closed loop transfer function

### Time Response Analysis (Part II)

Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

### LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT

### Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

### PID controllers. Laith Batarseh. PID controllers

Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

### Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

### ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

### CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

### Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

### Control Systems. University Questions

University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

### Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO)

Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 -X-O

### SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

### IC6501 CONTROL SYSTEMS

DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

### Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio

Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio Abstract Analyses of control systems require solution of differential

### Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

### CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

### 100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

### If you need more room, use the backs of the pages and indicate that you have done so.

EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

### Root Locus Techniques

Root Locus Techniques 8 Chapter Learning Outcomes After completing this chapter the student will be able to: Define a root locus (Sections 8.1 8.2) State the properties of a root locus (Section 8.3) Sketch

### Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

### 10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative

### Class 12 Root Locus part II

Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,

### Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

### Controller Design using Root Locus

Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers

### Class 11 Root Locus part I

Class 11 Root Locus part I Closed loop system G(s) G(s) G(s) Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K We shall assume here K >,

### Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

### Compensator Design to Improve Transient Performance Using Root Locus

1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

### ECE317 : Feedback and Control

ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

### Performance of Feedback Control Systems

Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING

EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types

### INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

### Automatic Control Systems, 9th Edition

Chapter 7: Root Locus Analysis Appendix E: Properties and Construction of the Root Loci Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois

### Control of Manufacturing Processes

Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

### Outline. Classical Control. Lecture 5

Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

### Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

### Control of Electromechanical Systems

Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain

### School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### Course Summary. The course cannot be summarized in one lecture.

Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

### ECE317 : Feedback and Control

ECE317 : Feedback and Control Lecture : Routh-Hurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling

### Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

### Outline. Classical Control. Lecture 1

Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

### 7.1 Introduction. Apago PDF Enhancer. Definition and Test Inputs. 340 Chapter 7 Steady-State Errors

340 Chapter 7 Steady-State Errors 7. Introduction In Chapter, we saw that control systems analysis and design focus on three specifications: () transient response, (2) stability, and (3) steady-state errors,

### EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

### Automatic Control (TSRT15): Lecture 4

Automatic Control (TSRT15): Lecture 4 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Review of the last

### Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 4 Classical Control Overview II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Stability Analysis through Transfer Function Dr. Radhakant

### Root Locus Techniques

4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since

### CONTROL * ~ SYSTEMS ENGINEERING

CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control

### PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

### EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s)

EE3 - Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of

### Control System. Contents

Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

### Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

### Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can

### Dynamic Compensation using root locus method

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

### Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONICS ENGINEERING

### Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]