Time Response of Systems


 Dayna Gibson
 3 years ago
 Views:
Transcription
1 Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p = a, a > 0 s a e at p = a, a > 0 s+a e at 4
2 Lecture Notes on Control Systems/D. Ghose/ Poles F (s) f(t) splane Time response p = jb, p 2 = jb b s 2 +b 2 sin bt p = jb, p 2 = jb s s 2 +b 2 cos bt p = a + jb p 2 = a jb a>0, b>0 b (s+a) 2 +b 2 e at sin bt p = a + jb p 2 = a jb a>0, b>0 s+a (s+a) 2 +b 2 e at cos bt p = a + jb p 2 = a jb a<0, b>0 b (s+a) 2 +b 2 e at sin bt p = a + jb p 2 = a jb a<0, b>0 s+a (s+a) 2 +b 2 e at cos bt What do we observe from these time responses?. Poles are real No oscillations. 2. Poles are positive (on the right hand side of the splane Exponential increase, or unstable. 3. Poles are negative (on the left hand side of the splane Exponential decrease, or stable.
3 Lecture Notes on Control Systems/D. Ghose/ Poles are imaginary Oscillations with no damping. 5. Poles are complex Damped oscillations. These can be summarized in the following figure. PROBLEM SET 3 Figure 0.: Time response for different pole placements. Find the partial fraction expansions of the following transfer functions: (a) G(s) = s+2 s 2 +5s+2 (b) G(s) = s 2 + (s+) 2 (s+3) (c) G(s) = s 2 +3 s 3 +3s 2 +5s+6 2. Find the time response of the following systems, driven by unit step input signals, using Laplace transforms: (a) d2 x dt 2 +5 dx dt +3x =3u(t)
4 Lecture Notes on Control Systems/D. Ghose/ (b) Massspring system. 0ẍ +3x =5u(t) (c) Springmassdamper system. 6ẍ +2ẋ +3x =2u(t) Note that the initial conditions can be nonzero. What is an oscillation? It is a result of energy transfer between two energy storage elements. For example, in a springmassdamper system: mass: kinetic energy spring: potential energy damper: energy dissipator Figure 0.2: Springmassdamper system What is damping? It is the result of energy dissipation. 0.2 Time Response Characteristics What are the main system time response characteristics? These can be classified in the following three categories.. Transient response (Output signal soon after the input signal is applied) 2. Steadystate response (Output signal long time after the input signal is applied) 3. Stability Our main objective is to find the behaviour of a system (in terms of the output y(t)) for various input signals r(t). Normally, the input r(t) is not known in advance since all we may know is the system transfer function G(s). So, it is customary to check the behaviour of a system for the following types of inputs:. Unit Step: r(t) =u(t) R(s) = s
5 Lecture Notes on Control Systems/D. Ghose/ Unit Ramp: r(t) =tu(t) R(s) = s 2 3. Unit Impulse: r(t) = δ(t) R(s) = 4. Sinusoid: r(t) =u(t)sinωt R(s) = ω s 2 +ω 2 Usually designers assume that if the system behaviour is OK for these functions then most probably it will be ok for other signals too. In fact one usually looks at system behaviour against step functions only. Why? Because most piecewise continuous signals can be represented as a collection of pulses (which in turn can be created by algebraic manipulation of unit step functions). This we have already seen. Another Assumption. Any linear constantcoefficient system can be broken down into a cascade of first and second order systems (remember that we did this when we did the partial fraction expansion). Figure 0.3: A LTI system represented as a cascade of smaller systems So it is logical to first examine the time response of first and second order systems against step inputs. 0.3 Characteristics of First Order Systems Consider the first order system (assuming zero initial condition), a ẏ + a 0 y = b 0 r Taking Laplace transforms on both sides (a s + a 0 )Y (s) =b 0 R(s)
6 Lecture Notes on Control Systems/D. Ghose/ So, the transfer function G(s) is given by, G(s) = Y (s) R(s) = b 0 a s + a 0 = b 0 a s + a 0 a The poles of G(s) are the roots of the denominator polynomial. Define, Define, So, p = a 0 a = a 0 a Time constant Bandwidth K = b 0 Open loop gain or DC gain a 0 G(s) = b 0 a s + a 0 = b 0 a s + a 0 a = b 0 a 0 a 0 a s + a 0 a = K s + Suppose, Figure 0.4: Position of pole and the impulse response of a first order system r(t) =δ(t)
7 Lecture Notes on Control Systems/D. Ghose/ which is an impulse function. Then, R(s) = and Taking inverse Laplace transform, Y (s) =G(s)R(s) =K s + y(t) =K e t = K e t t y(t) 0 K K e =0.37 K. is the time required for y(t) to reach 37% of its initial value. 2. The DC gain term arises from the observation that for a unit step input, y(t) K as t. Check: Y (s) =G(s)R(s) = K s + [ = K Taking inverse Laplace transform on both sides, y(t) =K [ ] e t So, s s + + s lim = K t So the idea is: Send in and get K, after things have settled down! Try getting the same result using the final value theorem. y( ) = lim s 0 sy (s) = lim What does the response look like? s 0 K s + = K ]
8 Lecture Notes on Control Systems/D. Ghose/ Figure 0.5: Unit step response of a first order system
9.5 The Transfer Function
Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the nth order linear, timeinvariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +
More informationBasic Procedures for Common Problems
Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available
More informationSTABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
More informationCHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang
CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 51 Road Map of the Lecture V Laplace Transform and Transfer
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More information9.2 The InputOutput Description of a System
Lecture Notes on Control Systems/D. Ghose/212 22 9.2 The InputOutput Description of a System The inputoutput description of a system can be obtained by first defining a delta function, the representation
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationController Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
More informationPoles, Zeros and System Response
Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationGATE EE Topic wise Questions SIGNALS & SYSTEMS
www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationLaplace Transforms Chapter 3
Laplace Transforms Important analytical method for solving linear ordinary differential equations.  Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52
1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n
More informationIntroduction & Laplace Transforms Lectures 1 & 2
Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationSchool of Mechanical Engineering Purdue University. ME375 Dynamic Response  1
Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation  Free Response Stable
More informationEE C128 / ME C134 Midterm Fall 2014
EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator
More informationCHAPTER 5: LAPLACE TRANSFORMS
CHAPTER 5: LAPLACE TRANSFORMS SAMANTHA RAMIREZ PREVIEW QUESTIONS What are some commonly recurring functions in dynamic systems and their Laplace transforms? How can Laplace transforms be used to solve
More informationToday s goals So far Today 2.004
Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the openloop poles/zeros to the closedloop poles Moving the closedloop poles around Today Proportional
More information06/12/ rws/jMc modif SuFY10 (MPF)  Textbook Section IX 1
IV. ContinuousTime Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] Onesided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationLaplace Transform Part 1: Introduction (I&N Chap 13)
Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final
More informationI Laplace transform. I Transfer function. I Conversion between systems in time, frequencydomain, and transfer
EE C128 / ME C134 Feedback Control Systems Lecture Chapter 2 Modeling in the Frequency Domain Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley Lecture
More informationUnit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace
Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : RouthHurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationLTI Systems (Continuous & Discrete)  Basics
LTI Systems (Continuous & Discrete)  Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and timeinvariant (b) linear and timevarying
More informationMath 266 Midterm Exam 2
Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4by6
More informationSchool of Engineering Faculty of Built Environment, Engineering, Technology & Design
Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Coordinator/Tutor : Dr. Phang
More information20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes
Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationControl Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017
More informationLinear Systems Theory
ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system?  Time domain  Frequency domain (Laplace
More informationENGIN 211, Engineering Math. Laplace Transforms
ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationLaplace Transforms and use in Automatic Control
Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationChapter 6: The Laplace Transform. ChihWei Liu
Chapter 6: The Laplace Transform ChihWei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informatione st f (t) dt = e st tf(t) dt = L {t f(t)} s
Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic
More informationLaplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France
Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical
More informationMath 308 Exam II Practice Problems
Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also rework all examples given in lecture and all suggested homework problems..
More informationAPPPHYS 217 Tuesday 6 April 2010
APPPHYS 7 Tuesday 6 April Stability and inputoutput performance: secondorder systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra
More informationMODELING OF CONTROL SYSTEMS
1 MODELING OF CONTROL SYSTEMS Feb15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace
More informationTransform Solutions to LTI Systems Part 3
Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationNPTEL Online Course: Control Engineering
NPTEL Online Course: Control Engineering Ramkrishna Pasumarthy Assignment11 : s 1. Consider a system described by state space model [ ] [ 0 1 1 x + u 5 1 2] y = [ 1 2 ] x What is the transfer function
More informationEL2520 Control Theory and Practice
So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal
More informationSome special cases
Lecture Notes on Control Systems/D. Ghose/2012 87 11.3.1 Some special cases Routh table is easy to form in most cases, but there could be some cases when we need to do some extra work. Case 1: The first
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationProblem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013
EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationOneSided Laplace Transform and Differential Equations
OneSided Laplace Transform and Differential Equations As in the dcretetime case, the onesided transform allows us to take initial conditions into account. Preliminaries The onesided Laplace transform
More informationEE 3054: Signals, Systems, and Transforms Summer It is observed of some continuoustime LTI system that the input signal.
EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuoustime LTI system that the input signal = 3 u(t) produces
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #4 Monday, January 13, 2003 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Impulse and Step Responses of ContinuousTime
More informationCHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2
CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial
More informationStep Response Analysis. Frequency Response, Relation Between Model Descriptions
Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationSystems Engineering/Process Control L4
1 / 24 Systems Engineering/Process Control L4 Inputoutput models Laplace transform Transfer functions Block diagram algebra Reading: Systems Engineering and Process Control: 4.1 4.4 2 / 24 Laplace transform
More informationECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:
ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2sided sheet of handwritten notes. 2. Turn off
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationIntroduction to Modern Control MT 2016
CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 Firstorder ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear
More informationL2 gains and system approximation quality 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationSYLLABUS. osmania university CHAPTER  1 : TRANSIENT RESPONSE CHAPTER  2 : LAPLACE TRANSFORM OF SIGNALS
i SYLLABUS osmania university UNIT  I CHAPTER  1 : TRANSIENT RESPONSE Initial Conditions in ZeroInput Response of RC, RL and RLC Networks, Definitions of Unit Impulse, Unit Step and Ramp Functions,
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationLecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:3012:30
289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (23 sessions) Final Exam on 12/21/2015 (Monday)10:3012:30 Today: Recap
More informationSolution of ODEs using Laplace Transforms. Process Dynamics and Control
Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace
More informationEE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models
EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the
More informationThe Laplace transform
The Laplace transform Samy Tindel Purdue University Differential equations  MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Stability RouthHurwitz stability criterion Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationThe Laplace Transform
The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd
More informationAutomatic Control Systems (FCS) Lecture 8 Steady State Error
Automatic Control Systems (FCS) Lecture 8 Steady State Error Introduction Any physical control system inherently suffers steadystate error in response to certain types of inputs. A system may have no
More informationEE Homework 12  Solutions. 1. The transfer function of the system is given to be H(s) = s j j
EE3054  Homework 2  Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationThe Laplace Transform
The Laplace Transform Generalizing the Fourier Transform The CTFT expresses a timedomain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationCourse roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform
ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More information