STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse


 Marsha Cross
 3 years ago
 Views:
Transcription
1 SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. STABILITY Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse responses Use of the Laplace Transform may be summarized through Transfer functions. The contents of the blocks in the block diagrams are Transfer functions. Looked at alternative system analysis in using convolution. Found that it may sometimes be more complicated than Laplace analysis, however does yield useful insights to system behaviour. Now we need to assess the stability of systems. In general, only stable systems are useful to us. System stability can be assessed in both splane and in the time domain (using the system impulse response). This handout will 1. Define asymptotic and Boundedinput, Boundedoutput (BIBO) stability. Then examine equivalence for Linear Systems. 2. Relate system stability to poles of transfer function. 1 This handout is based on the set of notes produced by Prof. Anil Kokaram 3C1 Signals and Systems 1
2 1 THE NEED FOR STABILITY 3. Relate transient response to poles of transfer function. 4. Show how the Final Value Theorem can be used to determine the steady state response of the system. 1 The need for stability Some questions may occur to you: Who cares if a system is unstable? Is being unstable bad? Why is being stable good? What s the big deal? What does it mean for a system to be stable anyway? Consider a Hovering Harrier. The pilot switches on hover mode. He expects the control system to adjust the lift surfaces and the directional thrust jets so that the aircraft remains in the same place. Why is this so difficult? Its because without the engine thrust, the vehicle will fall. Because of wind gusts you have to compensate for the applied force to keep the aircraft in the same place. If the system is not designed correctly, the counter thrust could overcompensate and the harrier may never return to the equilibrium position. Such a system is unstable, and when designing systems we have to ensure that the system is stable. In this case stability is the ability to return to the equilibrium position regardless of external noises. It ll be pretty sad if testing a system for stability implies you have to test it with all possible inputs to see if it performs as you expect or not. Thankfully, the unifying idea in the LTI systems above is that when a stable system is in some steady state and you kick it (within some reasonable bounds), it returns to a steady state after a little while. The response of a system to a kick (an impulse) is its impulse response. Stabilty can therefore be determined by a system impulse response. 3C1 Signals and Systems 2
3 Asymptotic Stability 1 THE NEED FOR STABILITY Definition: A linear system is asymptotically stable if its impulse response h(t) satisfies the condition where B is some positive number. Examples: h(t) dt = B < (1) 1. LCR circuit: h(t) = e 2t sin(3t + 4) 2. Delay line with lossy reflections: 1 h(t) = 2kδ(t kt ) k= In both these cases h(t) is bounded all the time and always decays to zero. 3C1 Signals and Systems 3
4 2 BIBO 2 BoundedInput BoundedOutput (BIBO) Stability Definition: A linear system is BIBO stable if there is a positive number B such that, for any bounded input signal x(t), x(t) < X, the resulting output signal y(t) is bounded by: y(t) < XB. Theorem: Asymptotic and BIBO stability are equivalent for linear systems. Note: They are not equivalent for nonlinear systems. 3C1 Signals and Systems 4
5 3 MARGINAL STABILITY 3 Marginal Stability Definition: A linear system is marginally stable if it is not asymptotically stable and one can find A, B < such that T h(t) dt < A + BT for all T 3.1 Examples: 1. Integrator T h(t) = u(t) h(t) dt = 2. Delay line with lossless reflections h(t) = δ(t k) T h(t) dt = k= T T 1dt = T δ(t k)dt = floor(t ) + 1 k= < T + 2 (2) 3. Undamped second order system h(t) = cos(3t) 3C1 Signals and Systems 5
6 4 INSTABILITY 4 Instability Definition: A system is unstable if it is neither asymptotically stable nor marginally stable. 4.1 Examples: 1. Inverted Pendulum: h(t) = e 4t + e 4t 2. Two integrators in series: h(t) = t 3. Unstable oscillator: h(t) = e.1t sin(.3t) Warning: Different people use different definitions of stability. In particular, systems which we have defined to be marginally stable would be regarded as stable by some and unstable by others. For this reason we avoid the term stable without qualification. 3C1 Signals and Systems 6
7 4.1 Examples: 4 INSTABILITY Poles and Zeros The zeros of a transfer function G(s) are those values of s at which G(s) becomes zero, and its poles are those values of s at which G(s) becomes infinite. If a transfer function is rational, i.e. it can be written as the ratio of two polynomials G(s) = n(s) d(s) then the zeros of G(s) are the roots of the numerator polynomial n(s), and its poles are the roots of the denominator polynomial d(s). d(s) is also known as the characteristic polynomial. For physically realisable systems: deg[n(s)] deg[d(s)] The degree of the denominator polynomial is known as the Order of the system. The poles of a transfer function are also called the characteristic roots or auxiliary roots. We can also speak of the poles and zeros of the Laplace transform of a signal. 3C1 Signals and Systems 7
8 4.1 Examples: 4 INSTABILITY splane surface for G(s) = (s+1.5)(s2 +s+1) (s+2)(s 2 +.1s+4) Re Im C1 Signals and Systems 8
9 5 POLES AND STABILITY 5 Poles and Stability Theorem: The transfer function of an asymptotically stable system cannot have any poles in the right half of the complex plane or on the imaginary axis. Proof A rational transfer function can always be expressed as: N r i H(s) = r + (s p i ) v i (Usually the poles (i.e. the values p i ) are distinct so that v i = 1). i=1 To work out the impulse response note from tables that L { t } v i 1 = (v i 1)! s v i { } t v i 1 L = 1 (v i 1)! s v i Using shift theorem { t v } i 1 1 L exp(p i t) = (v i 1)! (s p i ) v i (3) Hence the impulse response: N h(t) = i=1 r i t (v i 1) (v i 1)! ep it 3C1 Signals and Systems 9
10 5.1 Stable Systems 5 POLES AND STABILITY 5.1 Stable Systems By definition, for a system to be stable h(t) dt <. Since h(t) is the sum of a number of terms, a system will be stable if and only if each individual term of the sum corresponds to the impulse response of a stable system. Lets consider a single term of this sum: t (v i 1) h i (t) = r i (v i 1)! ep it Let p i = σ i + jω i. Then e p it = e σ it e jω it e p it = e σ it h i (t) = r i (v i 1)! tv i 1 e σ it If σ i < then h i (t) as t. (4) So h(t) returns to eventually if the pole has a negative real part, but remember this is not sufficient to prove that is stable. We need to show that h i (t) dt <. if σ i < : h i (t) dt = r i (v i 1)! tv i 1 e σ it dt Evaluating this integral is quite tricky because you have to do intergration by parts v i 1 times. It is possible to evaluate the integral using the following trick. 3C1 Signals and Systems 1
11 5.1 Stable Systems 5 POLES AND STABILITY h i (t) dt = h i (t) e st dt = L { h i (t) }. s= s= Hence { } ri L { h i (t) } = L (v i 1)! tvi 1 e σ it = r i (v i 1)! L { t vi 1 e } σ it from tables L { t } v i 1 = (v i 1)! s v i Shift Theorem L { t vi 1 e } σ it = (v i 1)! (s σ i ) v i r i L { h i (t) } = (s σ i ) v i and therefore h i (t) dt = h i (t) e st dt { = L h i (t) } s= r i = (s σ i ) v i = r i ( σ i ) v i < s= s= Hence h i (t) is stable if the real part of its pole is negative and hence a system will be stable if all its poles have negative real parts. 3C1 Signals and Systems 11
12 5.2 Marginal Stability and Instability 5 POLES AND STABILITY 5.2 Marginal Stability and Instability If σ i = and v i = 1, then from Equation (4): Hence: but: T h i (t) = r i (a constant) h i (t) dt = h i (t) dt r i T So the system exhibits marginal stability. Therefore it is marginally stable if there is a number distinct poles on the imaginary axis However, this does not apply if we have repeated poles on the imaginary axis. ie. If σ i = and v i > 1: T and the system is unstable. h i (t) dt = r i T v i v i! If σ i > then the system is also unstable. 3C1 Signals and Systems 12
13 5.2 Marginal Stability and Instability 5 POLES AND STABILITY Stability Theorem 1. A system is asymptotically stable if all its poles have negative real parts. 2. A system is unstable if any pole has a positive real part, or if there are repeated poles on the imaginary axis. 3. A system is marginally stable if all the poles on the imaginary axis are distinct, and all the remaining poles have negative real parts. 3C1 Signals and Systems 13
14 6 Poles and transient responses 6 POLES AND TRANSIENT RESPONSES Impulse response: h(t) = r δ(t) + N i=1 r i t (v i 1) (v i 1)! ep it Consider e p it. 6.1 Real Poles p i real: real exponential with time constant 1/p i. In other words the decay rate is propostional to the absolute value of the pole. The nearer it is on the real axis to the origin the longer the impulse response will take to decay. 6.2 Complex Poles p i complex: always has complex conjugate pole p i. These combine to give a damped or growing sinusoid. Assume v i = 1, then for a second order system (i = 2): { } Ae h(t) = L 1 jϕ + Ae jϕ s p i s p = Ae jϕ e pit + Ae jϕ e p i t i Note: For a real second order system the numerator coefficients are also complex conjugates. Recall that we defined p i = σ i + jω i { } h(t) = Ae σ it e j(ωit+ϕ) + e j(ω it+ϕ) h(t) = 2Ae σ it cos(ω i t + ϕ) 3C1 Signals and Systems 14
15 6.2 Complex Poles 6 POLES AND TRANSIENT RESPONSES The system pole locations are related to various impulse responses below. This is an important figure. Note: Like the first order system, the real part of the pole, σ i determines stability and the time constant, 1/σ i. The imaginary part ω i determines the the oscillation frequency ω i (rad/sec) x x x x 15 You can interactively explore the effect of pole and zero positions on impulse responses at signals/explore/index.html 3C1 Signals and Systems 15
16 6.3 Standard Form of a 2 nd Order System 6 POLES AND TRANSIENT RESPONSES 6.3 Standard Form of a 2 nd Order System The standard form of a second order system (with no zeros) is 2 H(s) = ω2 n + 2ζω n s + ωn 2 s (ζ: damping factor, ω n : natural frequency (ie. oscillation frequency when there is no damping).) we see: 2Re{p i } = 2ζω n and p i 2 = ω 2 n = σ 2 i + ω 2 i Hence: ζ = Re{p i} p i and ω n = p i Im Re Figure 1: Second order system showing relationship of pole locations to ζ, ω n. 3C1 Signals and Systems 16
17 6.3 Standard Form of a 2 nd Order System 6 POLES AND TRANSIENT RESPONSES Observations As we have seen previously the frequency of oscillation is equal to the value of the imaginary part of the pole. This is not the same thing as the natural frequency which is equal to the magnitude of the pole. By definition, these two quantities are only equivalent when ζ =. In general, increasing the natural frequency (for constant ζ) increases the frequency of oscillation, but also increases the decay rate. Intuitively, if the damping ratio is increased the oscillations will decay faster. However, increasing the damping ratio (for fixed ω n ) also reduces the frequency of oscillation. A system is UNDERDAMPED if ζ < 1. There are two complex poles in this case. A system is CRITICALLY DAMPED if ζ = 1. There are two real poles at the same point on the real axis. There is no oscillatory behaviour. A syetem is OVERDAMPED if ζ > 1. The system has two distinct real poles and behaves like a cascade of first order systems. 3C1 Signals and Systems 17
18 7 FINAL VALUE 7 A last word on time domain behaviour: THE FINAL VALUE THEOREM Transient system behaviour is only part of the story as far as time domain system behviour is concerned. Of equal interest is finding out the final value of a signal when the system has settled down to steady state behaviour. The final value theorem is a simple mechanism for using the Laplace Transform of a signal to predict its final value as t. Given some signal f(t), the final value theorem relates the steady state behaviour f(t) to the behaviour of F(s) in the neighbourhood of s =. It states that lim f(t) = lim sf (s) (5) t s The conditions that need to be obeyed for this theorem to be successfully applied are as follows. 1. lim t f(t) exists. Which just means that f(t) does indeed converge to some definite value as t. 2. All poles of sf(s) are in the left half plane. Note that we are talking here about s F(s) not just F(s). 3. sf(s) has no poles on the imaginary axis. Note that we are talking here about s F(s) not just F(s). Proof Recall that (from tables for instance) { } d L dt f(t) = sf(s) f() 3C1 Signals and Systems 18
19 7.1 How to use it 7 FINAL VALUE We want to examine what happens when this first differential tends to zero, since then that would mean that the signal is no longer varying with time. Consider ( ) d lim sf(s) f() = lim s s dt f(t) e st dt ( ) d = dt f(t) lim s e st dt ( ) d = dt f(t) dt [ ] = f(t) = lim t f(t) f() We can cancel f() as it appears on both sides and we are left with lim sf(s) = lim f(t) s t 7.1 How is this theorem actually used? Well, its like this. The theorem relates the steady state value of any signal to the behaviour of sf(s) near s =. So if you are asked for instance, what is the steady state value of the step response of some system, you first have to calculate the Laplace transform of that step response. This would mean calculating the product of the system transfer function with 1/s, or integrating the time domain impulse response and take the Laplace Transform. Then you can apply the theorem to work out what the final value of the step response is. Alternatively, you can forget about the theorem and hope that you can always spot the final value of a time domain signal by manipu 3C1 Signals and Systems 19
20 7.1 How to use it 7 FINAL VALUE lating it so that you can work out lim t f(t). For the step response example, that would mean working out the time domain signal output by taking the inverse laplace transform. Then trying to rewrite the signal expression to handle t for all the terms in t. Sadly, it is not always easy to massage the final value out of a time domain expression. Hence you tend to have to know the final value theorem. Example Find the steady state response of a system with transfer function H(s) = 5s 2 + 7s s 3 + 4s 2 + 7s + 6 when the input signal x(t) is the ramp function r(t). X(s)= L {R(s)} = 1 s 2 Applying the Final Value Theorem we get lim y(t)= lim sy (s) = lim t s = lim s s. 1 s 2 sx(s)h(s) s 5s 2 + 7s s 3 + 4s 2 + 7s + 6 = lim s 5s + 7 s 3 + 4s 2 + 7s + 6 = 7 6 3C1 Signals and Systems 2
Time Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More informationIdentification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability  26 March, 2014
Prof. Dr. Eleni Chatzi System Stability  26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can
More informationTransform Solutions to LTI Systems Part 3
Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised
More informationLecture 13: H(s) PolesZeros & BIBO Stability. (a) What are poles and zeros? Answer: HS math and calculus review.
1. Introduction Lecture 13: H(s) PolesZeros & BIBO Stability (a) What are poles and zeros? Answer: HS math and calculus review. (b) What are nice inputs? Answer: nice inputs are bounded inputs; if you
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationLaplace Transform Part 1: Introduction (I&N Chap 13)
Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationUnit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace
Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,
More informationReview: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system
Plan of the Lecture Review: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system Plan of the Lecture Review: transient and steadystate
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationBasic Procedures for Common Problems
Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available
More information27. The pole diagram and the Laplace transform
124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationChapter 6: The Laplace Transform. ChihWei Liu
Chapter 6: The Laplace Transform ChihWei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace
More information9.5 The Transfer Function
Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the nth order linear, timeinvariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : RouthHurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationEE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models
EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the
More informationLTI Systems (Continuous & Discrete)  Basics
LTI Systems (Continuous & Discrete)  Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and timeinvariant (b) linear and timevarying
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More informationIdentification Methods for Structural Systems
Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Stability RouthHurwitz stability criterion Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationCourse Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).
ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationGATE EE Topic wise Questions SIGNALS & SYSTEMS
www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationDefinition of the Laplace transform. 0 x(t)e st dt
Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or onesided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationModule 3F2: Systems and Control EXAMPLES PAPER 2 ROOTLOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOTLOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the rootlocus
More informatione st f (t) dt = e st tf(t) dt = L {t f(t)} s
Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic
More informationSTABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable
ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Boundedinput boundedoutput (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated
More informationIntroduction & Laplace Transforms Lectures 1 & 2
Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively
More informationProcess Control & Instrumentation (CH 3040)
Firstorder systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January  April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A firstorder
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More information20. The pole diagram and the Laplace transform
95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
More informationController Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationCDS 101/110: Lecture 3.1 Linear Systems
CDS /: Lecture 3. Linear Systems Goals for Today: Describe and motivate linear system models: Summarize properties, examples, and tools Joel Burdick (substituting for Richard Murray) jwb@robotics.caltech.edu,
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationExplanations and Discussion of Some Laplace Methods: Transfer Functions and Frequency Response. Y(s) = b 1
Engs 22 p. 1 Explanations Discussion of Some Laplace Methods: Transfer Functions Frequency Response I. Anatomy of Differential Equations in the SDomain Parts of the sdomain solution. We will consider
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationModule 4. Related web links and videos. 1. FT and ZT
Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationEE Homework 12  Solutions. 1. The transfer function of the system is given to be H(s) = s j j
EE3054  Homework 2  Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The
More informationCore Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly nonharmonic) complex sinusoids
Overview of ContinuousTime Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship
More informationChapter 7: Time Domain Analysis
Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationResponse to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215  INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline InputOutput
More informationLABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More informationControl Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationLaplace Transforms Chapter 3
Laplace Transforms Important analytical method for solving linear ordinary differential equations.  Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important
More informationLaplace Transforms and use in Automatic Control
Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral
More informationStep Response Analysis. Frequency Response, Relation Between Model Descriptions
Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =
More informationIntroduction to Process Control
Introduction to Process Control For more visit : www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit: www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationProblem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013
EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationOverview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
More informationFROM ANALOGUE TO DIGITAL
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary
More informationAdvanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc
Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationModule 06 Stability of Dynamical Systems
Module 06 Stability of Dynamical Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October 10, 2017 Ahmad F. Taha Module 06
More informationECE 3620: Laplace Transforms: Chapter 3:
ECE 3620: Laplace Transforms: Chapter 3: 3.13.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between
More informationCircuit Analysis Using Fourier and Laplace Transforms
EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India JulyNovember
More informationECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:
ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2sided sheet of handwritten notes. 2. Turn off
More information6.003 Homework #7 Solutions
6.003 Homework #7 Solutions Problems. Seconorer systems The impulse response of a seconorer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters
More informationReview of Linear TimeInvariant Network Analysis
D1 APPENDIX D Review of Linear TimeInvariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D1. If an input x 1 (t) produces an output y 1 (t), and an input x
More informationMODELING OF CONTROL SYSTEMS
1 MODELING OF CONTROL SYSTEMS Feb15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace
More informationTopic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations
Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method
More informationPart IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More information