Lecture 3 Semiconductor Physics (II) Carrier Transport


 Meagan Sullivan
 4 years ago
 Views:
Transcription
1 Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect Spring 2009 Lecture 3 1
2 1. Thermal Motion In thermal equilibrium, carriers are not sitting still: Undergo collisions with vibrating Si atoms (Brownian motion) Electrostatically interact with each other and with ionized (charged) dopants Characteristic time constant of thermal motion: mean free time between collisions τ c collison time [s] In between collisions, carriers acquire high velocity: v th thermal velocity [cms 1 ]. but get nowhere! Spring 2009 Lecture 3 2
3 Characteristic length of thermal motion: λ mean free path [cm] λ = v th τ c Put numbers for Si at room temperature: τ c s v th 10 7 cms 1 λ 0.01 µm For reference, stateoftheart production MOSFET: L g 0.1 µm Carriers undergo many collisions as they travel through devices Spring 2009 Lecture 3 3
4 2. Carrier Drift Apply electric field to semiconductor: E electric field [V cm 1 ] net force on carrier F = ±qe E Between collisions, carriers accelerate in the direction of the electrostatic field: v(t) = a t = ± qe m n,p t Spring 2009 Lecture 3 4
5 But there is (on the average) a collision every τ c and the velocity is randomized: net velocity in direction of field τ c The average net velocity in direction of the field: v = v d = ± qe 2m n,p τ c = ± qτ c 2m n,p E time This is called drift velocity [cm s 1 ] Define: µ n, p = qτ c 2m n,p mobility[cm 2 V 1 s 1 ] Then, for electrons: and for holes: v dn = µ n E v dp = µ p E Spring 2009 Lecture 3 5
6 Mobility  is a measure of ease of carrier drift If τ c, longer time between collisions µ If m, lighter particle µ At room temperature, mobility in Si depends on doping: mobility (cm 2 /Vs) holes electrons N d + N a total dopant concentration (cm 3 ) For low doping level, µ is limited by collisions with lattice. As Temp >INCREASES; µ> DECREASES For medium doping and high doping level, µ limited by collisions with ionized impurities Holes heavier than electrons For same doping level, µ n > µ p Spring 2009 Lecture 3 6
7 Drift Current Net velocity of charged particles electric current: Drift current density carrier drift velocity carrier concentration carrier charge Drift current densities: J n drift = qnvdn = qnµ n E drift J p = qpvdp = qpµ p E Check signs: E E v dn  + v dp J n drift J p drift x x Spring 2009 Lecture 3 7
8 Total Drift Current Density : drift drift drift J = J n + J p = q( nµ n + pµ p )E Has the form of Ohm s Law E J = σ E = ρ Where: σ conductivity [Ω 1 cm 1 ] ρ resistivity [Ω cm] Then: σ = 1 = q( nµ n + pµ p ) ρ Spring 2009 Lecture 3 8
9 Resistivity is commonly used to specify the doping level In ntype semiconductor: In ptype semiconductor: ρ n ρ p 1 qn d µ n 1 qn a µ p 1E+4 1E+3 Resistivity (ohm.cm) 1E+2 1E+1 1E+0 1E1 1E2 nsi psi 1E3 1E4 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 Doping (cm 3 ) Spring 2009 Lecture 3 9
10 Numerical Example: Si with N d = 3 x cm 3 at room temperature µ n 1000 cm 2 / V s ρ n 0.21Ω cm n 3X10 16 cm 3 Apply E = 1 kv/cm v dn 10 6 cm / s << v th J n drift qnvdn = qnµ n E = σ E = E ρ J n drift A / cm 2 Time to drift through L = 0.1 µm fast! t d = L v dn = 10 ps Spring 2009 Lecture 3 10
11 3. Carrier Diffusion Diffusion = particle movement (flux) in response to concentration gradient n Elements of diffusion: x A medium (Si Crystal) A gradient of particles (electrons and holes) inside the medium Collisions between particles and medium send particles off in random directions Overall result is to erase gradient Spring 2009 Lecture 3 11
12 Fick s first law Key diffusion relationship Diffusion flux  concentration gradient Flux number of particles crossing a unit area per unit time [cm 2 s 1 ] For Electrons: For Holes: dn F n = D n dx dp F p = D p dx D n 2 s 1 ] D p hole diffusion coefficient [cm 2 s 1 ] D measures the ease of carrier diffusion in response to a concentration gradient: D F diff D limited by vibration of lattice atoms and ionized dopants Spring 2009 Lecture 3 12
13 Diffusion Current Diffusion current density =charge carrier flux J diff dn n = qdn dx J diff dp p = qdp dx Check signs: n F n p Fp J ndiff J pdiff x x Spring 2009 Lecture 3 13
14 Einstein relation At the core of drift and diffusion is same physics: collisions among particles and medium atoms there should be a relationship between D and µ Einstein relation [will not derive in 6.012] D µ = kt q In semiconductors: D n µ n = kt q = D p µ p At room temperature: kt/q thermal voltage kt q 25mV For example: for N d = 3 x cm 3 µ n 1000 cm 2 / V s D n 25cm 2 / s µ p 400 cm 2 / V s D p 10 cm 2 / s Spring 2009 Lecture 3 14
15 Total Current Density In general, total current can flow by drift and diffusion separately. Total current density: J n = J drift n J p = J drift p + J diff n + J diff p dn = qnµ n E + qd n dx dp = qpµ p E qd p dx J total = J n + J p Spring 2009 Lecture 3 15
16 What did we learn today? Summary of Key Concepts Electrons and holes in semiconductors are mobile and charged Carriers of electrical current! Drift current: produced by electric field drift drift dφ J E J dx Diffusion current: produced by concentration gradient diffusion dn dp J, dx dx Diffusion and drift currents are sizeable in modern devices Carriers move fast in response to fields and gradients Spring 2009 Lecture 3 16
17 MIT OpenCourseWare Microelectronic Devices and Circuits Spring 2009 For information about citing these materials or our Terms of Use, visit:
Semiconductor Device Physics
1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle
More informationECE 142: Electronic Circuits Lecture 3: Semiconductors
Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors Ntype Ptype Carrier Transport Drift Diffusion Semiconductors A semiconductor
More informationCarriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Carriers Concentration, Current & Hall Effect in Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Conductivity Charge
More informationChapter 2. Electronics I  Semiconductors
Chapter 2 Electronics I  Semiconductors Fall 2017 talarico@gonzaga.edu 1 Charged Particles The operation of all electronic devices is based on controlling the flow of charged particles There are two type
More informationElectrical Resistance
Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
More informationCarrier transport: Drift and Diffusion
. Carrier transport: Drift and INEL 5209  Solid State Devices  Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003
More informationLecture 7  Carrier Drift and Diffusion (cont.) February 20, Nonuniformly doped semiconductor in thermal equilibrium
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 71 Lecture 7  Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationcollisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature
1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of
More informationLecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 11
Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 11 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:
More informationUniform excitation: applied field and optical generation. Nonuniform doping/excitation: diffusion, continuity
6.012  Electronic Devices and Circuits Lecture 2  Uniform Excitation; Nonuniform conditions Announcements Review Carrier concentrations in TE given the doping level What happens above and below room
More informationLecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)
Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime
More informationLecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 81 Lecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationChapter 5. Carrier Transport Phenomena
Chapter 5 Carrier Transport Phenomena 1 We now study the effect of external fields (electric field, magnetic field) on semiconducting material 2 Objective Discuss drift and diffusion current densities
More informationCarrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor?
Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? 1 Carrier Motion I Described by 2 concepts: Conductivity: σ
More informationECE305: Spring Carrier Action: II. Pierret, Semiconductor Device Fundamentals (SDF) pp
ECE305: Spring 015 Carrier Action: II Pierret, Semiconductor Device Fundamentals (SDF) pp. 89104 Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationDiodes. anode. cathode. cutoff. Can be approximated by a piecewiselinearlike characteristic. Lecture 91
Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode
More informationChapter 1 Semiconductor basics
Chapter 1 Semiconductor basics ELECH402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and holeelectron pair Intrinsic silicon properties Doped
More informationECE 440 Lecture 12 : Diffusion of Carriers Class Outline:
ECE 440 Lecture 12 : Diffusion of Carriers Class Outline: Band Bending Diffusion Processes Diffusion and Drift of Carriers Things you should know when you leave Key Questions How do I calculate kinetic
More informationNumerical Example: Carrier Concentrations
2 Numerical ample: Carrier Concentrations Donor concentration: N d = 10 15 cm 3 Thermal equilibrium electron concentration: n o N d = 10 15 cm 3 Thermal equilibrium hole concentration: 2 2 p o = n i no
More informationLecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure
Lecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with
More informationECE 340 Lecture 21 : PN Junction II Class Outline:
ECE 340 Lecture 21 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationChapter 1 Overview of Semiconductor Materials and Physics
Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B
More informationLecture 3 Transport in Semiconductors
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,
More informationRecitation 17: BJTBasic Operation in FAR
Recitation 17: BJTBasic Operation in FAR BJT stands for Bipolar Junction Transistor 1. Can be thought of as two pn junctions back to back, you can have pnp or npn. In analogy to MOSFET small current
More informationCarrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities
More informationLecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations
Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low
More informationWeek 3, Lectures 68, Jan 29 Feb 2, 2001
Week 3, Lectures 68, Jan 29 Feb 2, 2001 EECS 105 Microelectronics Devices and Circuits, Spring 2001 Andrew R. Neureuther Topics: M: Charge density, electric field, and potential; W: Capacitance of pn
More informationLecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion
Lecture 2 OUTLIE Basic Semiconductor Physics (cont d) Carrier drift and diffusion P unction Diodes Electrostatics Caacitance Reading: Chater 2.1 2.2 EE105 Sring 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC
More informationLecture 15  The pn Junction Diode (I) IV Characteristics. November 1, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 151 Lecture 15  The pn Junction Diode (I) IV Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. IV characteristics
More informationSemiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136
CHAPTER 3 Semiconductors Introduction 135 3.1 Intrinsic Semiconductors 136 3.2 Doped Semiconductors 139 3.3 Current Flow in Semiconductors 142 3.4 The pn Junction 148 3.5 The pn Junction with an Applied
More informationReview 5 unknowns: n(x,t), p(x,t), J e. Doping profile problems Electrostatic potential Poisson's equation. (x,t), J h
6.012  Electronic Devices and Circuits Lecture 3  Solving The Five Equations  Outline Announcements Handouts  1. Lecture; 2. Photoconductivity; 3. Solving the 5 eqs. See website for Items 2 and 3.
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationCarriers Concentration and Current in Semiconductors
Carriers Concentration and Current in Semiconductors Carrier Transport Two driving forces for carrier transport: electric field and spatial variation of the carrier concentration. Both driving forces lead
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More informationLecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I V characteristics in forward active regime Reading Assignment:
More information8.1 Drift diffusion model
8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of
More informationLecture 7. Drift and Diffusion Currents. Reading: Pierret
Lecture 7 Drift and Diffusion Currents Reading: Pierret 3.13.2 Ways Carriers (electrons and holes) can change concentrations Current Flow: Drift: charged article motion in resonse to an electric field.
More informationLecture 15: Optoelectronic devices: Introduction
Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1
More informationElectric FieldDefinition. Brownian motion and drift velocity
Electric FieldDefinition Definition of electrostatic (electrical) potential, energy diagram and how to remember (visualize) relationships E x Electrons roll downhill (this is a definition ) Holes are
More informationSemiconductor Physics. Lecture 3
Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers
More information16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:
16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion
More informationECE305: Spring 2018 Exam 2 Review
ECE305: Spring 018 Exam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75138) Chapter 5 (pp. 1956) Professor Peter Bermel Electrical and Computer Engineering Purdue University,
More informationElectronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline
6.012  Electronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline Review Depletion approimation for an abrupt pn junction Depletion charge storage and depletion capacitance
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationLecture 8  Carrier Drift and Diffusion (cont.), Carrier Flow. February 21, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 81 Lecture 8  Carrier Drift and Diffusion (cont.), Carrier Flow February 21, 2007 Contents: 1. QuasiFermi levels 2. Continuity
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "
More informationSession 5: Solid State Physics. Charge Mobility Drift Diffusion RecombinationGeneration
Session 5: Solid State Physics Charge Mobility Drift Diffusion RecombinationGeneration 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur
More informationESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor
Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back
More informationRecitation 2: Equilibrium Electron and Hole Concentration from Doping
Recitation : Equilibrium Electron and Hole Concentration from Doping Here is a list of new things we learned yesterday: 1. Electrons and Holes. Generation and Recombination 3. Thermal Equilibrium 4. Law
More informationLecture 16 The pn Junction Diode (III)
Lecture 16 The pn Junction iode (III) Outline I V Characteristics (Review) Small signal equivalent circuit model Carrier charge storage iffusion capacitance Reading Assignment: Howe and Sodini; Chapter
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 11/15/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More informationPN Junction
P Junction 20170504 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u
More informationLecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 13/4/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More informationLecture 9  Carrier Drift and Diffusion (cont.), Carrier Flow. September 24, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 91 Lecture 9  Carrier Drift and Diffusion (cont.), Carrier Flow September 24, 2001 Contents: 1. QuasiFermi levels 2. Continuity
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence
More informationLecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination
Lecture 8 Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Reading: (Cont d) Notes and Anderson 2 sections 3.43.11 Energy Equilibrium Concept Consider a nonuniformly
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:304:30
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationDue to the quantum nature of electrons, one energy state can be occupied only by one electron.
In crystalline solids, not all values of the electron energy are possible. The allowed intervals of energy are called allowed bands (shown as blue and chessboard blue). The forbidden intervals are called
More informationPN Junction and MOS structure
PN Junction and MOS structure Basic electrostatic equations We will use simple onedimensional electrostatic equations to develop insight and basic understanding of how semiconductor devices operate Gauss's
More informationChapter 2 Motion and Recombination of Electrons and Holes
Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg
More informationBasic Physics of Semiconductors
Basic Physics of Semiconductors Semiconductor materials and their properties PNjunction diodes Reverse Breakdown EEM 205 Electronics I Dicle University, EEE Dr. Mehmet Siraç ÖZERDEM Semiconductor Physics
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET NType, PType. Semiconductor Physics.
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff
More informationLecture 7  PN Junction and MOS Electrostatics (IV) Electrostatics of MetalOxideSemiconductor Structure. September 29, 2005
6.12  Microelectronic Devices and Circuits  Fall 25 Lecture 71 Lecture 7  PN Junction and MOS Electrostatics (IV) Electrostatics of MetalOideSemiconductor Structure September 29, 25 Contents: 1.
More informationQuiz #1 Practice Problem Set
Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016  No aids except a nonprogrammable calculator  All questions must be answered  All questions
More informationECE 440 Lecture 28 : PN Junction II Class Outline:
ECE 440 Lecture 28 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationLecture 10  Carrier Flow (cont.) February 28, 2007
6.720J/3.43J Integrated Microelectronic Devices  Spring 2007 Lecture 101 Lecture 10  Carrier Flow (cont.) February 28, 2007 Contents: 1. Minoritycarrier type situations Reading assignment: del Alamo,
More informationEE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions
EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction ptype semiconductor in
More informationMotion and Recombination of Electrons and Holes
Chater Motion and Recombination of Electrons and Holes OBJECTIVES. Understand how the electrons and holes resond to an electric field (drift).. Understand how the electrons and holes resond to a gradient
More informationLecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005
6.12 Microelectronic Devices and Circuits Fall 25 Lecture 8 1 Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oide Semiconductor Structure (cont.) Contents: October 4, 25 1. Overview
More informationLecture 27: Introduction to Bipolar Transistors
NCN www.nanohub.org ECE606: Solid State Devices Lecture 27: Introduction to ipolar Transistors Muhammad Ashraful Alam alam@purdue.edu Alam ECE 606 S09 1 ackground E C E C ase! Point contact Germanium transistor
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects
More informationCharge Carriers in Semiconductor
Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms
More informationLecture 0. EE206 Electronics I
Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:3012:20 (Lectures)
More informationCarrier Transport by Diffusion
Carrier Transport by Diffusion Holes diffuse ÒdownÓ the concentration gradient and carry a positive charge > hole diffusion current has the opposite sign to the gradient in hole concentration dp/dx p(x)
More informationEECS 117 Lecture 13: Method of Images / Steady Currents
EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider
More informationThe Electromagnetic Properties of Materials
The lectromagnetic Properties of Materials lectrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)
More informationPHYS208 PN Junction. Olav Torheim. May 30, 2007
1 PHYS208 PN Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationElectronics The basics of semiconductor physics
Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors
More informationSemiconductor Physics
Semiconductor Physics Motivation Is it possible that there might be current flowing in a conductor (or a semiconductor) even when there is no potential difference supplied across its ends? Look at the
More informationECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:
ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationLecture 13  Carrier Flow (cont.), MetalSemiconductor Junction. October 2, 2002
6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 131 Contents: Lecture 13  Carrier Flow (cont.), MetalSemiconductor Junction October 2, 22 1. Transport in spacecharge and highresistivity
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture
More informationEffective masses in semiconductors
Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse
More informationSemiconductor Junctions
8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss
More informationMicroscopic Ohm s Law
Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.
More informationIsolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands
Isolated atoms Hydrogen Energy Levels Neuromorphic Engineering I INI404 227103300 Electron in atoms have quantized energy levels Material courtesy of Elisabetta Chicca Bielefeld University, Germany
More informationMinority Carrier Diffusion Equation (MCDE)
ECE305: Spring 2015 Minority Carrier Diffusion Equation (MCDE) Professor Mark undstrom Electrical and Computer Engineering Purdue University, West afayette, IN USA lundstro@purdue.edu Pierret, Semiconductor
More informationELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and SelfHeating
ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and SelfHeating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor
More informationFor the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.
Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The
More informationSemiconductor Detectors
Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e  Charge
More informationn N D n p = n i p N A
Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donordoped semiconductor: n N D where N D is the concentration of donor impurity Acceptordoped
More informationThe 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities:
6.012  Electronic Devices and Circuits Solving the 5 basic equations  2/12/08 Version The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities: n(x,t),
More information