Chapter 2. Electronics I - Semiconductors

Size: px
Start display at page:

Download "Chapter 2. Electronics I - Semiconductors"

Transcription

1 Chapter 2 Electronics I - Semiconductors Fall 2017 talarico@gonzaga.edu 1

2 Charged Particles The operation of all electronic devices is based on controlling the flow of charged particles There are two type of charge in solids Electrons Holes There are two mechanism through which charge can be transported in a material Drift (motion of charge caused by an electric field) Diffusion (motion resulting from a non-uniform charge distribution) talarico@gonzaga.edu 2

3 Electronic Structure of the elements Atom s chemical activity depends on the electrons in the outermost shells (orbits). These electrons are called VALENCE electrons. In extremely pure elements, such as silicon, the atoms arrange themselves in regular patterns called CRYSTALS. The valence electrons determine the exact shape (= LATTICE structure) talarico@gonzaga.edu 3

4 Electronic orbitals in silicon Element Atomic Number Configuration Si 14 (1s) 2 (2s) 2 (2p) 6 (3s) 2 (3p) 2 s, p, d designate orbital shape s holds up to 2 electrons p holds up to 6 electrons d holds up to 10 electrons Source: Howe & Sodini talarico@gonzaga.edu 4

5 Silicon Crystal Lattice Source: Howe & Sodini concentration (atoms/cm 3 ) of atoms in silicon talarico@gonzaga.edu 5

6 2D-Representation of Silicon Crystal Source: Sedra & Smith Figure 3.1 Two-dimensional representation of the silicon crystal. The circles represent the inner core of silicon atoms, with +4 indicating its positive charge of +4q, which is neutralized by the charge of the four valence electrons. Observe how the covalent bonds are formed by sharing of the valence electrons. At 0 K, all bonds are intact and no free electrons are available for current conduction. talarico@gonzaga.edu 6

7 Free electrons and holes Source: Sedra & Smith Figure 3.2 At room temperature, some of the covalent bonds are broken. Each broken bond gives rise to a free electron and a hole, both of which become available for current conduction. talarico@gonzaga.edu 7

8 Periodic Table Source: Pierret 8

9 Energy Band Structure Band gap energy (E g ) is the minimum energy to dislodge an electron from its covalent bond. For Silicon at room temp. (T=300 K) E g = 1.12 ev = Joule Source: Millman & Halkias talarico@gonzaga.edu 9

10 Concentration of free electrons The concentration of electrons (and holes) in pure silicon at room temperature is approximately: As temperature increases, the intrinsic concentration n i approximately doubles every 10 C rise over room temperature (source: Howe & Sodini) Given that the number of bonds is cm 3, at room temperature only an extremely small fraction of the bonds are broken (1 in bonds, that is 1 in atoms) Too few: we need more!!! n " T = 300 K 1 10,- cm 01 n " (T) n " (T 1-- ) ,- cm 01 talarico@gonzaga.edu 10

11 Intrinsic carrier concentration as a function of temperature source: Streetman 300 K = 27 C For an intrinsic semiconductor: n = p = n i / talarico@gonzaga.edu 11

12 Intrinsic carrier concentration E G also depends on T n " = A 9 A : T 1/= e 5 10,C T 1/= e (cm 01 ) The constants A C and A V can be derived from the effective density of the states in conduction band N C (cm -3 ) and valence band N V (cm -3 ). N 9 = A 9 T 1/= N : = A : T 1/= For silicon at T = 300K (source Pierret): N C = 3.22 x cm 3 and N V = 1.83 x cm 3 n " T = 300 K 1 10,- cm 01 Boltzmann constant = K = 8.617e-5 ev/k = J/ K Energy Gap for silicon at room temperature = 1.12 ev talarico@gonzaga.edu 12

13 Energy Band Gap The energy band gap E g is affected by temperature according to the following Varshni equation: (ev) where E g (0) is the band gap energy at absolute zero and a E and b E are material specific constants talarico@gonzaga.edu 13

14 Extrinsic Semiconductors (1) Doping with donor impurities (N-type semiconductor) source: Sedra & Smith Example: N D cm -3 Figure 3.3 A silicon crystal doped by a pentavalent element. Each dopant atom donates a free electron and is thus called a donor. The doped semiconductor becomes n type. talarico@gonzaga.edu 14

15 Extrinsic Semiconductors (2) Doping with acceptor impurities (P-type semiconductor) source: Sedra & Smith Example: N A cm -3 Figure 3.4 A silicon crystal doped with boron, a trivalent impurity. Each dopant atom gives rise to a hole, and the semiconductor becomes p type. talarico@gonzaga.edu 15

16 N-type semiconductor E C E G E D E V source: Howe & Sodini source: Millman & Halkias q = Cb ρ = chargedensity[cb / cm 3 ] = 0 = ( qn) + (qp) + qn D electrons holes donors talarico@gonzaga.edu 16

17 P-type semiconductor (1) E C E G E A E V source: Howe & Sodini source: Millman & Halkias q = Cb ρ = chargedensity[cb / cm 3 ] = 0 = ( qn) + (qp) qn A electrons holes acceptors talarico@gonzaga.edu 17

18 P-type semiconductor (2) Holes can be filled by absorbing free electrons, therefore there is an effective flow of holes Holes are slower than free electrons (due to the probability of a hole to be filled) The effective mass of holes is larger than the effective mass of the free electrons: m* h > m* e talarico@gonzaga.edu 18

19 Mobility of free electrons and holes Electron and Hole mobilities for silicon at 300 K Mobilities vary with doping level source: Howe & Sodini For intrinsic silicon at T=300 K: μ p 480 cm 2 /(V s) μ n 1350 cm 2 /(V s) 2.8 μ p µ T 3/2 N tot = N A + N D = talarico@gonzaga.edu 19

20 Mass Action Law The mass-action law is valid for both intrinsic (pure) and extrinsic (doped) semiconductors n i 2 = n p If n then p A larger number of free electrons causes the recombination rate of free electrons with holes to increase talarico@gonzaga.edu 20

21 Doping with donors (n-type) Charge neutrality: ρ = 0 = q(p n + N D ) Using mass-action law: n i 2 flip sides multiply both sides by n 2 n n + N = 0 n i D n + n N = 0 D n2 N D n n 2 i = 0 n = N D ± N D 2 4n i 2 2 N D Free electrons are Majority Carriers p! n 2 i N D Holes are Minority Carriers doping with N D >> n i talarico@gonzaga.edu 21

22 Doping with acceptors (p-type) Charge neutrality: Doping with N A >> n i ρ = 0 = q(p n + N D ) p N A n! n 2 i N A Holes are Majority Carriers Free electrons are Minority Carriers talarico@gonzaga.edu 22

23 Doping with both donors and acceptors Charge neutrality: ρ = 0 = q(p n + N D N A ) Assuming that N D -N A >> n i (nearly always true) For N D > N A n! N D N A and p! n i 2 N D N A For N A > N D p! N A N D and n! n i 2 N A N D talarico@gonzaga.edu 23

24 First Carriers Transport Mechanism: Drift!!!" drift v p = µ p E!!!" drift v n = µn E The process in which charged particles move because of an electric field is called drift. Charged particles will move at a velocity that is proportional to the electric field (this is true as long as the field doesn t become too large) talarico@gonzaga.edu 24

25 Drift velocity in silicon v n,drift, v p,drift velocity start to saturate talarico@gonzaga.edu 25

26 Saturation of the drift velocity v drift source: Razavi source Gray & Meyer: v FG"HI E μe 1 + E = μe 1 + μe E 9 v NOI Eventually the drift velocity saturates: there are too many collisions among ` carriers and between carriers and lattice v sat for silicon is 10 7 cm/s = 10 5 m/s talarico@gonzaga.edu 26

27 Drift Current source: Streetman H drift E P = F: R S: R = : 7 = : 7 FP SP 0T T talarico@gonzaga.edu 27

28 Drift current and current density electric current: amount of charge that flows through a reference plane per unit time charge per unit volume [Cb/cm 3 ] I FG"HI = ΔQ Δt source: Streetman = Δx W H n q Δt volume per unit time [cm 3 /s] = v FG"HI W H n q v drift! Δx Δt crosssection Area [cm 2 ] charge per unit volume (aka charge density) [Cb/cm 3 ] Cb s = A + + Figure 4 16 Current entering and leaving a volume ΔxA J drift = I drift W H [A / m2 ] Current Density source: Howe & Sodini talarico@gonzaga.edu 28

29 Drift Current Density Source: Howe & Sodini J n drift v drift n J p drift v p drift J drift = J drift n + J drift p = v drift n q e n + v drift p q p p = µ n Eq e n + µ p Eq h n = = µ n Eqn + µ p Eqp = ( µ n qn + µ p qp)e = σ = 1/ρ conductivity [Ωm] 1 q h = q e q = Cb J drift = σ E Ohm Law talarico@gonzaga.edu 29

30 Conversion between resistivity and dopant density of silicon at room temperature source: Hu 30

31 Second Carriers Transport Mechanism: Diffusion The thermal motion of an electron or a hole changes direction frequently by scattering off imperfections in the semiconductor crystal source: Streetman In a material where the concentration of particles is uniform the random motion balances out and no net movement result (drunk sail-man walk Brownian walks) Random thermal motion of an electron or hole in a solid. talarico@gonzaga.edu 31

32 Diffusion Current If there is a difference (gradient) in concentration between two parts of a material, statistically there will be more particles crossing from the side with higher concentration to the side with lower concentration than vice versa Therefore we expect a net flux of particles q p = q e! q Source: Razavi I n diff I p diff dn Aq e dx dp Aq p dx = Aq dn dx = Aq dp dx The more non uniform is the concentration the more is the current talarico@gonzaga.edu 32

33 Electron and hole diffusion current Assuming the charge concentration decreases with increasing x it means that dn/dx and dp/dx are negative quantities so to conform with conventions we have to put a sign in front of the proportionality constant D I n diff I p diff dn = D n Aq e dx = D naq dn dx dp = D p Aq p dx = D dp paq dx Source: Howe & Sodini talarico@gonzaga.edu 33

34 Diffusion current densities J diff = J p diff + J n diff J n diff J p diff dn = D n q e dx = D nq dn dx dp = D p q p dx = D q dp p dx Source: Howe & Sodini talarico@gonzaga.edu 34

35 Einstein s Relation Since both μ and D are manifestation of thermal random motion (i.e. are due to statistical thermodynamics phenomena) they are not independent D p = D n = KT µ p µ n q Einstein s Relation K=Boltzmann Constant = J/ K = ev/ K T = temperature in K q = charge of proton = Cb V T! KT q Thermal Voltage At room temperature V T 25.9 mv talarico@gonzaga.edu 35

36 Total current density The electron and hole total current density is: J = J p + J n = J p drift + J p diff + J n drift + J n diff J p = J p drift + J p diff J n = J n drift + J n diff = qpµ p E qd p dp dx = qnµ n E + qd n dn dx dp J = qpµ p E qd p dx + qnµ dn ne + qd n dx talarico@gonzaga.edu 36

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration, Current & Hall Effect in Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Conductivity Charge

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Lecture 3 Semiconductor Physics (II) Carrier Transport

Lecture 3 Semiconductor Physics (II) Carrier Transport Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.4-2.6 6.012 Spring 2009 Lecture 3 1

More information

Electrical Resistance

Electrical Resistance Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure

More information

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Chapter 1 Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Atomic Structure Atom is the smallest particle of an element that can exist in a stable or independent

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Chapter 1 Semiconductor basics

Chapter 1 Semiconductor basics Chapter 1 Semiconductor basics ELEC-H402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and hole-electron pair Intrinsic silicon properties Doped

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136 CHAPTER 3 Semiconductors Introduction 135 3.1 Intrinsic Semiconductors 136 3.2 Doped Semiconductors 139 3.3 Current Flow in Semiconductors 142 3.4 The pn Junction 148 3.5 The pn Junction with an Applied

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Lecture 0. EE206 Electronics I

Lecture 0. EE206 Electronics I Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:30-12:20 (Lectures)

More information

PN Junction and MOS structure

PN Junction and MOS structure PN Junction and MOS structure Basic electrostatic equations We will use simple one-dimensional electrostatic equations to develop insight and basic understanding of how semiconductor devices operate Gauss's

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Numerical Example: Carrier Concentrations

Numerical Example: Carrier Concentrations 2 Numerical ample: Carrier Concentrations Donor concentration: N d = 10 15 cm -3 Thermal equilibrium electron concentration: n o N d = 10 15 cm 3 Thermal equilibrium hole concentration: 2 2 p o = n i no

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the SEMICONDUCTORS Conductivity lies between conductors and insulators The flow of charge in a metal results from the movement of electrons Electros are negatively charged particles (q=1.60x10-19 C ) The outermost

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Semiconductors Figure 1-1 The Bohr model of an atom showing electrons in orbits

More information

Carrier transport: Drift and Diffusion

Carrier transport: Drift and Diffusion . Carrier transport: Drift and INEL 5209 - Solid State Devices - Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall

More information

Where µ n mobility of -e in C.B. µ p mobility of holes in V.B. And 2

Where µ n mobility of -e in C.B. µ p mobility of holes in V.B. And 2 3.. Intrinsic semiconductors: Unbroken covalent bonds make a low conductivity crystal, and at 0 o k the crystal behaves as an insulator, since no free electrons and holes are available. At room temperature,

More information

Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor?

Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? 1 Carrier Motion I Described by 2 concepts: Conductivity: σ

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

1. Introduction of solid state 1.1. Elements of solid state physics:

1. Introduction of solid state 1.1. Elements of solid state physics: 1. Introduction of solid state 1.1. Elements of solid state physics: To understand the operation of many of the semiconductor devices we need, at least, an appreciation of the solid state physics of homogeneous

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

ECE 442. Spring, Lecture -2

ECE 442. Spring, Lecture -2 ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture -2 Semiconductor physics band structures and charge carriers 1. What are the types of

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Basic Physics of Semiconductors Semiconductor materials and their properties PN-junction diodes Reverse Breakdown EEM 205 Electronics I Dicle University, EEE Dr. Mehmet Siraç ÖZERDEM Semiconductor Physics

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Semiconductor Physics. Lecture 3

Semiconductor Physics. Lecture 3 Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

The Periodic Table III IV V

The Periodic Table III IV V The Periodic Table III IV V Slide 1 Electronic Bonds in Silicon 2-D picture of perfect crystal of pure silicon; double line is a Si-Si bond with each line representing an electron Si ion (charge +4 q)

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities

More information

Isolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands

Isolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands Isolated atoms Hydrogen Energy Levels Neuromorphic Engineering I INI-404 227-1033-00 Electron in atoms have quantized energy levels Material courtesy of Elisabetta Chicca Bielefeld University, Germany

More information

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I Lecture (02) Introduction to Electronics II, PN Junction and Diodes I By: Dr. Ahmed ElShafee ١ Agenda Current in semiconductors/conductors N type, P type semiconductors N Type Semiconductor P Type Semiconductor

More information

Carriers Concentration and Current in Semiconductors

Carriers Concentration and Current in Semiconductors Carriers Concentration and Current in Semiconductors Carrier Transport Two driving forces for carrier transport: electric field and spatial variation of the carrier concentration. Both driving forces lead

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors.

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors. - 1-3/4/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction,

More information

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity 6.012 - Electronic Devices and Circuits Lecture 2 - Uniform Excitation; Non-uniform conditions Announcements Review Carrier concentrations in TE given the doping level What happens above and below room

More information

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS Reference: Electronic Devices by Floyd 1 ELECTRONIC DEVICES Diodes, transistors and integrated circuits (IC) are typical devices in electronic circuits. All

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 Concept of Core Conductivity of conductor and semiconductor can also be explained by concept of Core. Core: Core is a part of an atom other than its valence electrons. Core consists of all inner shells

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 2 Semiconductors Topics Covered in Chapter 2 Conductors Semiconductors Silicon crystals Intrinsic semiconductors Two types of flow Doping a

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

ECE 340 Lecture 21 : P-N Junction II Class Outline:

ECE 340 Lecture 21 : P-N Junction II Class Outline: ECE 340 Lecture 21 : P-N Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

Chapter 5. Carrier Transport Phenomena

Chapter 5. Carrier Transport Phenomena Chapter 5 Carrier Transport Phenomena 1 We now study the effect of external fields (electric field, magnetic field) on semiconducting material 2 Objective Discuss drift and diffusion current densities

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

More information

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material 9/1/1 ECE 34 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Things you should know when you leave Key Questions What is the physical meaning of the effective mass What does a negative effective

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1 EE 346: Semiconductor Devices 02/08/2017 Tewodros A. Zewde 1 DOPANT ATOMS AND ENERGY LEVELS Without help the total number of carriers (electrons and holes) is limited to 2ni. For most materials, this is

More information

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors.

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors. - 1-1/15/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction,

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 The German University in Cairo th Electronics 5 Semester Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 Problem Set 3 1- a) Find the resistivity

More information

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood ELECTRONIC I Lecture 1 Introduction to semiconductor By Asst. Prof Dr. Jassim K. Hmood SOLID-STATE ELECTRONIC MATERIALS Electronic materials generally can be divided into three categories: insulators,

More information

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013. Diodes EE223 Digital & Analogue Electronics Derek Molloy 2012/2013 Derek.Molloy@dcu.ie Diodes: A Semiconductor? Conductors Such as copper, aluminium have a cloud of free electrons weak bound valence electrons

More information

Lecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion

Lecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion Lecture 2 OUTLIE Basic Semiconductor Physics (cont d) Carrier drift and diffusion P unction Diodes Electrostatics Caacitance Reading: Chater 2.1 2.2 EE105 Sring 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Semiconductor Physics

Semiconductor Physics Semiconductor Physics Motivation Is it possible that there might be current flowing in a conductor (or a semiconductor) even when there is no potential difference supplied across its ends? Look at the

More information

Lecture (02) PN Junctions and Diodes

Lecture (02) PN Junctions and Diodes Lecture (02) PN Junctions and Diodes By: Dr. Ahmed ElShafee ١ I Agenda N type, P type semiconductors N Type Semiconductor P Type Semiconductor PN junction Energy Diagrams of the PN Junction and Depletion

More information

CLASS 12th. Semiconductors

CLASS 12th. Semiconductors CLASS 12th Semiconductors 01. Distinction Between Metals, Insulators and Semi-Conductors Metals are good conductors of electricity, insulators do not conduct electricity, while the semiconductors have

More information

PHYS208 p-n junction. January 15, 2010

PHYS208 p-n junction. January 15, 2010 1 PHYS208 p-n junction January 15, 2010 List of topics (1) Density of states Fermi-Dirac distribution Law of mass action Doped semiconductors Dopinglevel p-n-junctions 1 Intrinsic semiconductors List of

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

In this block the two transport mechanisms will be discussed: diffusion and drift.

In this block the two transport mechanisms will be discussed: diffusion and drift. ET3034TUx - 2.3.3 Transport of charge carriers What are the charge carrier transport principles? In this block the two transport mechanisms will be discussed: diffusion and drift. We will discuss that

More information

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

PHYS208 P-N Junction. Olav Torheim. May 30, 2007 1 PHYS208 P-N Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density

More information

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline:

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Effective Mass Intrinsic Material Extrinsic Material Things you should know when you leave Key Questions What is the physical meaning

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR A semiconductor in which the impurity atoms are added by doping process is called Extrinsic semiconductor. The addition of impurities increases the carrier

More information

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 7-1 Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration in Semiconductors - V 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Motion and Recombination of Electrons and

More information

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections Lecture 3b Bonding Model and Dopants Reading: (Cont d) Notes and Anderson 2 sections 2.3-2.7 The need for more control over carrier concentration Without help the total number of carriers (electrons and

More information

Electronics I - Diode models

Electronics I - Diode models Chapter 4 Electronics I - Diode models p n A K Fall 2017 talarico@gonzaga.edu 1 Effect of Temperature on I/V curves Source: Hu Figure 4.21 The IV curves of the silicon PN diode shift to lower voltages

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

CEMTool Tutorial. Semiconductor physics

CEMTool Tutorial. Semiconductor physics EMTool Tutorial Semiconductor physics Overview This tutorial is part of the EMWARE series. Each tutorial in this series will teach you a specific topic of common applications by explaining theoretical

More information

Lecture 2 Electrons and Holes in Semiconductors

Lecture 2 Electrons and Holes in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 2 Electrons and Holes in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004 Covalent Insulators and Chem 462 September 24, 2004 Diamond Pure sp 3 carbon All bonds staggered- ideal d(c-c) - 1.54 Å, like ethane Silicon, Germanium, Gray Tin Diamond structure Si and Ge: semiconductors

More information

Lecture 7. Drift and Diffusion Currents. Reading: Pierret

Lecture 7. Drift and Diffusion Currents. Reading: Pierret Lecture 7 Drift and Diffusion Currents Reading: Pierret 3.1-3.2 Ways Carriers (electrons and holes) can change concentrations Current Flow: Drift: charged article motion in resonse to an electric field.

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 12: Electrical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 12-1 ISSUES TO ADDRESS... How are electrical conductance and resistance

More information

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 8-1 Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

8.1 Drift diffusion model

8.1 Drift diffusion model 8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information