Semiconductor Device Physics


 Debra Anderson
 5 years ago
 Views:
Transcription
1 1 Semiconductor Device Physics Lecture
2 Semiconductor Device Physics 2
3 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle motion in response to an applied electric field. Diffusion: charged particle motion due to concentration gradient or temperature gradient. RecombinationGeneration: a process where charge carriers (electrons and holes) are annihilated (destroyed) and created. 3
4 electron Carrier Scattering Mobile electrons and atoms in the Si lattice are always in random thermal motion. Electrons make frequent collisions with the vibrating atoms. Lattice scattering or phonon scattering increases with increasing temperature. Average velocity of thermal motion for electrons: ~1/1000 x speed of light at 300 K (even under equilibrium conditions). Other scattering mechanisms: Deflection by ionized impurity atoms. Deflection due to Coulombic force between carriers or carriercarrier scattering. Only significant at high carrier concentrations. The net current in any direction is zero, if no electric field is applied.
5 Carrier Drift When an electric field (e.g. due to an externally applied voltage) is applied to a semiconductor, mobile chargecarriers will be accelerated by the electrostatic force. This force superimposes on the random motion of electrons F = qe 5 4 E electron Electrons drift in the direction opposite to the electric field Current flows. Due to scattering, electrons in a semiconductor do not achieve constant velocity nor acceleration. However, they can be viewed as particles moving at a constant average drift velocity v d. 5
6 Drift Current v d t v d t A p v d t A All holes this distance back from the normal plane will cross the plane in a time t All holes in this volume will cross the plane in a time t Holes crossing the plane in a time t q p v d t A Charge crossing the plane in a time t q p v d A q p v d Charge crossing the plane per unit time, Hole drift current I P drift (Ampere) Current density associated with hole drift current, J P drift (A/m 2 ) 6
7 7 Drift Velocity vs. Electric Field v v d d pe E n Linear relation holds in low field intensity, ~510 3 V/cm
8 Hole and Electron Mobility 8 has the dimensions of v/e : cm/s V/cm 2 cm V s Electron and hole mobility of selected intrinsic semiconductors (T = 300 K) Si Ge GaAs InAs n (cm 2 /V s) p (cm 2 /V s)
9 9 For holes, I J P drift P drift qpv A qpv d d Hole and Electron Mobility Hole current due to drift Hole current density due to drift In lowfield limit, J v d P drift pe q pe p μ p : hole mobility Similarly for electrons, J J N drift v d N drift qnvd ne q ne n Electron current density due to drift μ n : electron mobility
10 Temperature Effect on Mobility 10 R L R I Impedance to motion due to lattice scattering: No doping dependence Decreases with decreasing temperature Impedance to motion due to ionized impurity scattering: Increases with N A or N D Increases with decreasing temperature
11 11 Temperature Effect on Mobility Carrier mobility varies with doping: Decrease with increasing total concentration of ionized dopants. Carrier mobility varies with temperature: Decreases with increasing T if lattice scattering is dominant. Decreases with decreasing T if impurity scattering is dominant.
12 12 J N drift = qnv d = q n ne J P drift = qpv d = q p pe Conductivity and Resistivity J drift = J N drift + J P drift =q( n n+ p p)e = E Conductivity of a semiconductor: = q( n n+ p p) Resistivity of a semiconductor: = 1/
13 13 Resistivity Dependence on Doping For ntype material: 1 q N For ptype material: 1 q N n p D A
14 14 Carrier Mobility as Function Doping Level
15 15 Example Consider a Si sample at 300 K doped with /cm 3 Boron. What is its resistivity? N A = cm 3, N D = 0 (N A >> N D ptype) p cm 3, n 10 4 cm 3 1 qnn qpp 1 q p p [( )(437)(10 )] cm
16 16 Example Consider the same Si sample, doped additionally with /cm 3 Arsenic. What is its resistivity now? N A = cm 3, N D = cm 3 (N D > N A ntype) n N D N A = cm 3, p n i2 /n = cm 3 1 qnn qpp 1 q n n [( )(790)(9 10 )] μ n is to be taken for the value at N = N A + N D = cm 3 μn 790 cm 2 /V s cm
17 17 Example Consider a Si sample doped with cm 3 As. How will its resistivity change when the temperature is increased from T = 300 K to T = 400 K? The temperature dependent factor in (and therefore ) is n. From the mobility vs. temperature curve for cm 3, we find that n decreases from 770 at 300 K to 400 at 400 K. As a result, increases by a factor of:
18 Increasing electron energy 18 Increasing hole energy Potential vs. Kinetic Energy Electron kinetic energy E c Hole kinetic energy E v E c represents the electron potential energy: P.E. E E c reference E ref is arbitrary
19 19 E Band Bending Until now, E c and E v have always been drawn to be independent of the position. When an electric field E exists inside a material, the band energies become a function of position. E c E v x Variation of E c with position is called band bending
20 P.E. qv The potential energy of a particle with charge q is related to the electrostatic potential V(x): Band Bending 1 V ( E ) c E reference q E V dv dx 1 de 1 de 1 de E q dx q dx q dx c v i Since E c, E v, and E i differ only by an additive constant 20
21 Diffusion Particles diffuse from regions of higher concentration to regions of lower concentration region, due to random thermal motion (Brownian Motion). 21
22 22 1D Diffusion Example Thermal motion causes particles to move into an adjacent compartment every τ seconds.
23 23 dn qd dx dp qd dx J N diff N P diff P J Diffusion Currents n e p h Electron flow Current flow x D is the diffusion coefficient, in [cm 2 /sec] x Hole flow Current flow
24 24 Total Currents J J J dn JN JN drift JN diff qnne qdn dx dp JP JP drift JP diff qp pe qdp dx N P Drift current flows when an electric field is applied. Diffusion current flows when a gradient of carrier concentration exist.
25 25 Current Flow Under Equilibrium Conditions In equilibrium, there is no net flow of electrons or : JN 0, JP 0 The drift and diffusion current components must balance each other exactly. A builtin electric field of ionized atoms exists, such that the drift current exactly cancels out the diffusion current due to the concentration gradient. J dn q ne qd dx N n N 0
26 Current Flow Under Equilibrium Conditions Consider a piece of nonuniformly doped semiconductor: ntype semiconductor Decreasing donor concentration E c (x) F c n NCe dn NC EFEc kt de e dx kt dx n de c kt dx E F dn q E E kt c E v (x) dx kt n E Under equilibrium, E F inside a material or a group of materials in intimate contact is not a function of position 26
27 27 J Einstein Relationship between D and But, under equilibrium conditions, J N = 0 and J P = 0 dn q ne qd dx q qne qne D kt N n N 0 n N 0 Similarly, D N n DP p kt q kt q Einstein Relationship Further proof can show that the Einstein Relationship is valid for a nondegenerate semiconductor, both in equilibrium and nonequilibrium conditions.
28 28 Example: Diffusion Coefficient What is the hole diffusion coefficient in a sample of silicon at 300 K with p = 410 cm 2 / V.s? D P kt q p mev 410 cm V s 1e 2 cm mv 410 Vs cm /s ev 1 V 1 e 19 1 ev J Remark: kt/q = mv at room temperature
29 29 Recombination Generation Recombination: a process by which conduction electrons and holes are annihilated in pairs. Generation: a process by which conduction electrons and holes are created in pairs. Generation and recombination processes act to change the carrier concentrations, and thereby indirectly affect current flow.
30 30 Generation Processes BandtoBand R G Center Impact Ionization E 1 de c q dx Release of energy E T : trap energy level Due to lattice defects or unintentional impurities Also called indirect generation E G Only occurs in the presence of large E
31 31 Recombination Processes BandtoBand R G Center Auger Collision Rate is limited by minority carrier trapping Primary recombination way for Si Occurs in heavily doped material
32 32 Homework 2 1. (4.17) Problem 3.6, Pierret s Semiconductor Device Fundamentals. 2. (4.27) Problem 3.12, from (a) until (f), for Figure P3.12(a) and Figure P3.12(f), Pierret s Semiconductor Device Fundamentals. 3. (5.28) The electron concentration in silicon at T = 300 K is given by 16 x 3 nx ( ) 10 exp cm 18 where x is measured in μm and is limited to 0 x 25 μm. The electron diffusion coefficient is D N = 25 cm 2 /s and the electron mobility is μ n = 960 cm 2 /(Vs). The total electron current density through the semiconductor is constant and equal to J N = 40 A/cm 2. The electron current has both diffusion and drift current components. Determine the electric field as a function of x which must exist in the semiconductor. Sketch the function.
Session 5: Solid State Physics. Charge Mobility Drift Diffusion RecombinationGeneration
Session 5: Solid State Physics Charge Mobility Drift Diffusion RecombinationGeneration 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur
More informationLecture 3 Semiconductor Physics (II) Carrier Transport
Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.42.6 6.012 Spring 2009 Lecture 3 1
More informationECE 440 Lecture 12 : Diffusion of Carriers Class Outline:
ECE 440 Lecture 12 : Diffusion of Carriers Class Outline: Band Bending Diffusion Processes Diffusion and Drift of Carriers Things you should know when you leave Key Questions How do I calculate kinetic
More informationLecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination
Lecture 8 Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Reading: (Cont d) Notes and Anderson 2 sections 3.43.11 Energy Equilibrium Concept Consider a nonuniformly
More informationMotion and Recombination of Electrons and Holes
Chater Motion and Recombination of Electrons and Holes OBJECTIVES. Understand how the electrons and holes resond to an electric field (drift).. Understand how the electrons and holes resond to a gradient
More informationCarriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Carriers Concentration, Current & Hall Effect in Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Conductivity Charge
More informationCarrier transport: Drift and Diffusion
. Carrier transport: Drift and INEL 5209  Solid State Devices  Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall
More informationElectrical Resistance
Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure
More informationSemiconductor Physics. Lecture 3
Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers
More informationECE 340 Lecture 21 : PN Junction II Class Outline:
ECE 340 Lecture 21 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationECE 142: Electronic Circuits Lecture 3: Semiconductors
Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors Ntype Ptype Carrier Transport Drift Diffusion Semiconductors A semiconductor
More informationDiodes. anode. cathode. cutoff. Can be approximated by a piecewiselinearlike characteristic. Lecture 91
Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationChapter 2. Electronics I  Semiconductors
Chapter 2 Electronics I  Semiconductors Fall 2017 talarico@gonzaga.edu 1 Charged Particles The operation of all electronic devices is based on controlling the flow of charged particles There are two type
More informationNumerical Example: Carrier Concentrations
2 Numerical ample: Carrier Concentrations Donor concentration: N d = 10 15 cm 3 Thermal equilibrium electron concentration: n o N d = 10 15 cm 3 Thermal equilibrium hole concentration: 2 2 p o = n i no
More informationcollisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature
1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of
More informationCarrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor?
Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? 1 Carrier Motion I Described by 2 concepts: Conductivity: σ
More informationECE305: Spring Carrier Action: II. Pierret, Semiconductor Device Fundamentals (SDF) pp
ECE305: Spring 015 Carrier Action: II Pierret, Semiconductor Device Fundamentals (SDF) pp. 89104 Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA
More informationChapter 5. Carrier Transport Phenomena
Chapter 5 Carrier Transport Phenomena 1 We now study the effect of external fields (electric field, magnetic field) on semiconducting material 2 Objective Discuss drift and diffusion current densities
More informationLecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations
Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationCarrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities
More informationLecture 7. Drift and Diffusion Currents. Reading: Pierret
Lecture 7 Drift and Diffusion Currents Reading: Pierret 3.13.2 Ways Carriers (electrons and holes) can change concentrations Current Flow: Drift: charged article motion in resonse to an electric field.
More informationThe German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014
The German University in Cairo th Electronics 5 Semester Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 Problem Set 3 1 a) Find the resistivity
More informationLecture 3 Transport in Semiconductors
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,
More informationBasic Physics of Semiconductors
Basic Physics of Semiconductors Semiconductor materials and their properties PNjunction diodes Reverse Breakdown EEM 205 Electronics I Dicle University, EEE Dr. Mehmet Siraç ÖZERDEM Semiconductor Physics
More informationECE 250 Electronic Devices 1. Electronic Device Modeling
ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only
More informationCarriers Concentration and Current in Semiconductors
Carriers Concentration and Current in Semiconductors Carrier Transport Two driving forces for carrier transport: electric field and spatial variation of the carrier concentration. Both driving forces lead
More informationQuiz #1 Practice Problem Set
Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016  No aids except a nonprogrammable calculator  All questions must be answered  All questions
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationCharge Carriers in Semiconductor
Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms
More informationLecture 15: Optoelectronic devices: Introduction
Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1
More informationLecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 11
Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 11 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:
More informationFor the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.
Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The
More informationChapter 1 Overview of Semiconductor Materials and Physics
Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B
More informationLecture 7  Carrier Drift and Diffusion (cont.) February 20, Nonuniformly doped semiconductor in thermal equilibrium
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 71 Lecture 7  Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationSolid State Physics SEMICONDUCTORS  IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL
Solid State Physics SEMICONDUCTORS  IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a ptype semiconductor, i.e. n h >> n e. (1) Create a local
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationPHYS208 PN Junction. Olav Torheim. May 30, 2007
1 PHYS208 PN Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density
More information3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV
3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the
More informationSemiconductor Junctions
8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss
More informationECE 440 Lecture 28 : PN Junction II Class Outline:
ECE 440 Lecture 28 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationUniform excitation: applied field and optical generation. Nonuniform doping/excitation: diffusion, continuity
6.012  Electronic Devices and Circuits Lecture 2  Uniform Excitation; Nonuniform conditions Announcements Review Carrier concentrations in TE given the doping level What happens above and below room
More informationLecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 81 Lecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
More informationLecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion
Lecture 2 OUTLIE Basic Semiconductor Physics (cont d) Carrier drift and diffusion P unction Diodes Electrostatics Caacitance Reading: Chater 2.1 2.2 EE105 Sring 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC
More informationElectric FieldDefinition. Brownian motion and drift velocity
Electric FieldDefinition Definition of electrostatic (electrical) potential, energy diagram and how to remember (visualize) relationships E x Electrons roll downhill (this is a definition ) Holes are
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 11/15/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More informationCourse overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy
Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationn N D n p = n i p N A
Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donordoped semiconductor: n N D where N D is the concentration of donor impurity Acceptordoped
More informationV BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.
Consider the the band diagram for a homojunction, formed when two bits of the same type of semicondutor (e.g. Si) are doped p and ntype and then brought into contact. Electrons in the two bits have different
More information( )! N D ( x) ) and equilibrium
ECE 66: SOLUTIONS: ECE 66 Homework Week 8 Mark Lundstrom March 7, 13 1) The doping profile for an n type silicon wafer ( N D = 1 15 cm  3 ) with a heavily doped thin layer at the surface (surface concentration,
More informationIsolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands
Isolated atoms Hydrogen Energy Levels Neuromorphic Engineering I INI404 227103300 Electron in atoms have quantized energy levels Material courtesy of Elisabetta Chicca Bielefeld University, Germany
More informationPeak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,
Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier
More informationECE305: Spring 2018 Exam 2 Review
ECE305: Spring 018 Exam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75138) Chapter 5 (pp. 1956) Professor Peter Bermel Electrical and Computer Engineering Purdue University,
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003
More informationECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:
ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 13/4/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More informationIn this block the two transport mechanisms will be discussed: diffusion and drift.
ET3034TUx  2.3.3 Transport of charge carriers What are the charge carrier transport principles? In this block the two transport mechanisms will be discussed: diffusion and drift. We will discuss that
More informationClassification of Solids
Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples
More informationPN Junction
P Junction 20170504 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u
More informationChapter 7. The pn Junction
Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a Ptype substrate such that a layer of semiconductor is converted into N type. Converting
More information16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:
16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion
More informationDue to the quantum nature of electrons, one energy state can be occupied only by one electron.
In crystalline solids, not all values of the electron energy are possible. The allowed intervals of energy are called allowed bands (shown as blue and chessboard blue). The forbidden intervals are called
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationChapter 2 Motion and Recombination of Electrons and Holes
Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationIntroduction to Engineering Materials ENGR2000. Dr.Coates
Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A
More informationEngineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1
Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we
More information1. Introduction of solid state 1.1. Elements of solid state physics:
1. Introduction of solid state 1.1. Elements of solid state physics: To understand the operation of many of the semiconductor devices we need, at least, an appreciation of the solid state physics of homogeneous
More information8.1 Drift diffusion model
8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is
More informationCLASS 3&4. BJT currents, parameters and circuit configurations
CLASS 3&4 BJT currents, parameters and circuit configurations I E =I Ep +I En I C =I Cp +I Cn I B =I BB +I En I Cn I BB =I Ep I Cp I E = I B + I C I En = current produced by the electrons injected from
More informationReview Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination
Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The MetalSemiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)
More informationECE305: Fall 2016 Minority Carrier Diffusion Equation (MCDE)
ECE305: Fall 2016 Minority Carrier Diffusion Equation (MCDE) Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More informationChapter 1 Semiconductor basics
Chapter 1 Semiconductor basics ELECH402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and holeelectron pair Intrinsic silicon properties Doped
More informationESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor
Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back
More informationECE 442. Spring, Lecture 2
ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture 2 Semiconductor physics band structures and charge carriers 1. What are the types of
More informationChapter 2 Motion and Recombination of Electrons and Holes
Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310
More informationIntroduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals
More informationSession 6: Solid State Physics. Diode
Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between
More informationSolid State Device Fundamentals
Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal
More informationSemiconductorDetectors
SemiconductorDetectors 1 Motivation ~ 195: Discovery that pn junctions can be used to detect particles. Semiconductor detectors used for energy measurements ( Germanium) Since ~ 3 years: Semiconductor
More informationReview of Semiconductor Fundamentals
ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,
More informationLecture 15  The pn Junction Diode (I) IV Characteristics. November 1, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 151 Lecture 15  The pn Junction Diode (I) IV Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. IV characteristics
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationElectronics The basics of semiconductor physics
Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors
More informationSemiconductor device structures are traditionally divided into homojunction devices
0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting
More informationMinimal Update of Solid State Physics
Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationMetal Semiconductor Contacts
Metal Semiconductor Contacts The investigation of rectification in metalsemiconductor contacts was first described by Braun [3335], who discovered in 1874 the asymmetric nature of electrical conduction
More informationECE 335: Electronic Engineering Lecture 2: Semiconductors
Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors Ntype Ptype Carrier Transport Drift Diffusion Semiconductors
More informationLecture 10  Carrier Flow (cont.) February 28, 2007
6.720J/3.43J Integrated Microelectronic Devices  Spring 2007 Lecture 101 Lecture 10  Carrier Flow (cont.) February 28, 2007 Contents: 1. Minoritycarrier type situations Reading assignment: del Alamo,
More informationThe Periodic Table III IV V
The Periodic Table III IV V Slide 1 Electronic Bonds in Silicon 2D picture of perfect crystal of pure silicon; double line is a SiSi bond with each line representing an electron Si ion (charge +4 q)
More informationSemiconductor physics I. The Crystal Structure of Solids
Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors
More informationCalculating Band Structure
Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic
More information