Advanced Simulation Methods for Charge Transport in OLEDs

Size: px
Start display at page:

Download "Advanced Simulation Methods for Charge Transport in OLEDs"

Transcription

1 FLUXiM Advanced Simulation Methods for Charge Transport in OLEDs Evelyne Knapp, B. Ruhstaller Overview 1. Introduction 2. Physical Models 3. Numerical Methods 4. Outlook

2 ICP Team Interdisciplinary team of 8 physicists, 4 mathematicians und 3 engineers 1996 Section NMSA Spin-offs: 2002 Foundation CCP Numerical Modeling GmbH, Foundation ICP Fluxim AG,

3 Research Activities The main focus is applied research and development in the following areas: Micro systems, sensors, actors Fuel cells Organic optoelectronic and photovoltaics Simulation software

4 AEVIOM Advanced Experimentally Validated OLED model Philips Research Eindhoven Project Coordinator: Reinder Coehoorn Philips Research Aachen Zürich University of Applied Sciences Fluxim Eindhoven University of Technology Technical University Dresden Sim4Tec University of Groningen University of Cambridge

5 Principle of OLED Operation X Fundamental Processes: 1 Anode 2 Hole transport layer (HTL) h!" 4 3 EML X Electron transport layer (ETL) Cathode 1. Charge Injection 2. Charge Carrier Transport 3. Exciton Formation 4. Radiative Decay 5. Light Extraction Real stack consists of up to 12 layers!

6 Simulation of Organic LEDs LUMO! Cathode! Anode! HOMO! Novel physical models require better numerical methods Transient simulations and IV curves need multiple simulations Efficient simulations are crucial Experimental data from CSEM, simulation by ICP

7 Modeling of charge carrier transport Gummel solver Newton solver Bipolar Injection Organic material properties Disorder (Gaussian DOS) Mobility Generalized Einstein relation Traps (Exponential DOS) Multilayer OLEDs Exciton dynamics Parameter extraction Coupling to optical model Impedance simulations Overview-Task list

8 Organic Materials Gaussian Disorder Energy LUMO HOMO Small molecules and polymer LEDs/solar cells Charge transport by hopping between uncorrelated sites Width of DOS-disorder parameter σ ( mev) DOS DOS(ɛ) = N t 2πσ exp [ ( ) ] 2 ɛ ɛ0 2σ

9 Governing Equations in OLEDs Poisson equation: ɛ ψ = q(n p) Continuity equation: J p + q p t = qr(p, n) Drift-Diffusion: J p = qµ p p ψ qd p p similar for electrons

10 Governing Equations in OLEDs Poisson equation: ɛ ψ = q(n p) Continuity equation: J p + q p t = qr(p, n) Drift-Diffusion: J p = qµ p p ψ qd p p similar for electrons mobility & diffusion coefficient are affected by the Gaussian DOS!

11 Generalized Einstein Relation E p = DOS(E)f(E)dE ordered material DOS E Statistics Einstein relation Boltzmann D µ = kt q DOS(E), f(e)

12 Generalized Einstein Relation E p = DOS(E)f(E)dE DOS ordered material E disordered material Gaussian Statistics Boltzmann Fermi-Dirac Einstein relation D µ = kt q D µ = p q p E F DOS(E), f(e)

13 Generalized Einstein Relation E p = DOS(E)f(E)dE DOS ordered material E disordered material Gaussian Statistics Boltzmann Fermi-Dirac Einstein relation D µ = kt q D µ = p q p E F DOS(E), f(e)

14 Extended Gaussian Disorder Model (EGDM) D p = k BT q µ 0(T, p, F )g 3 (p, T ) µ p (T, p, F )=µ 0 (T )g 1 (p, T )g 2 (F, T ) g 1 (p, T ) g 2 (F, T ) g 3 (p, T ) Nonlinear equations for mobility and diffusion coefficient Mobility depends on temperature, field and density S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78, (2008)

15 Cathode Effects of EGDM Transport % &'$!( " Anode organic material field [V m^-1] # $!!$!# constant Assumption of ohmic contact: Dirichlet boundary conditions n 1 =0.5N t n 2 =0.5N t 16V relative carrier density!"! &!! &!!& &!!" &!!' &!!# ( )*+,-(&$(. (! "! #! $! %! &!! device [nm]

16 Cathode Effects of EGDM Transport % &'$!( " Anode organic material field [V m^-1] # $!!$!# field dependent Assumption of ohmic contact: Dirichlet boundary conditions n 1 =0.5N t n 2 =0.5N t 16V relative carrier density!"! &!! &!!& &!!" &!!' &!!# )*+,-(&$(. /"(&$(. (! "! #! $! %! &!! device [nm] (

17 Cathode Effects of EGDM Transport % &'$!( " Anode organic material Assumption of ohmic contact: Dirichlet boundary conditions n 1 =0.5N t n 2 =0.5N t 16V relative carrier density field [V m^-1] &!! # $!!$!#!"! &!!& &!!" &!!' &!!# density dependent )*+,-(&$(. /"(&$(. /&(&$. (! "! #! $! %! &!! device [nm] (

18 Cathode Effects of EGDM Transport % &'$!( " Anode organic material field [V m^-1] # $!!$!# EGDM Assumption of ohmic contact: Dirichlet boundary conditions n 1 =0.5N t n 2 =0.5N t 16V relative carrier density!"! &!! &!!& &!!" &!!' &!!# )*+,-(&$(. /"(&$(. /&(&$. 0123(&$(. (! "! #! $! %! &!! device [nm] (

19 EGDM on single layer OLED IV Curve (hole-only device) IV Curve (hole-only device with 1eV built-in potential)!"!" %&'()*+,'-./0'& 1. 2!,& Diffusion effects Field- and density-dependent # 8!" $!" "!"!$!"!!" σ k B T =6 σ k B T =3!"!#!"!!!" "!"! +34/56,'7&8 Effects of different disorder parameters In good agreement with: S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78, (2008, Fig 9)

20 Recombination Profiles V V normalized recombination rate const!=3!= device [m] x device [m] x 10 7 Bipolar simulation with constant mobility and EGDM for and normalized recombination rate const!=3!=6 ˆσ =3 ˆσ =6 Effects of disorder clearly visible

21 Thermionic Injection metal organic LUMO Φ e Fermi energy workfunction Contact Region

22 Thermionic Injection metal organic LUMO Φ image = e2 1 16πɛɛ 0 x Φ e Fermi energy workfunction Contact Region

23 Thermionic Injection metal organic LUMO Φ image = e2 1 16πɛɛ 0 x Φ e Fermi energy workfunction qex Contact Region

24 Thermionic Injection metal organic LUMO Φ e Φ B Fermi energy workfunction Φ e eex e 2 16πɛɛ 0 x

25 Thermionic Injection metal organic metal organic LUMO e -!! n Fermi Energy/ Workfunction Density at contact depends on position of Gaussian DOS Dependent boundary conditions

26 Effects of Injection Dependence of the current density on the injection barrier at 2V No effect if injection barrier < 0.5 ev Higher currents with image potential Agrees with Monte Carlo results In good agreement with: J.J.M. van der Holst, M.A. Uijttewaal, R. Balasubramanian, R. Coehoorn, P.A. Bobbert, G.A. de Wijs and R.A. de Groot (EUT, PRE), Phys. Rev. B (2009).

27 Trap Effects in OLEDs localized sites with higher electron affinity impurities, chemical defects Model trap distribution: Expontential, Gaussian discrete levels: shallow, deep exponential DOS Gaussian DOS ɛ ψ = q(n p + n total DOS t p t ) DOS J p + q p t = qr(p, n) J p = qµ p p ψ qd p p energy

28 Trap IV Curves!"!" +!'(/ !" & +(),-.*!" "!"!&!"!!"!"!!& simulation analytic experiment!"!%" m=1 m=8.1 m=2!"!#!"!$!"!%!" "!" %!" $ '()'* trap density influences current density Analytical solution for Gaussian DOS: M. M. Mandoc, B. de Boer, G. Paasch, P. W. M. Blom, Phys. Rev. B (2007).

29 Multi-layer Devices Stack of organic material to optimize recombination profiles and light emission

30 Spatial Discretization 1-dimensional finite volume method Domain divided into n grid points Anode Cathode Reformulation of problem F 1 (ψ, p, n) = ɛ ψ q(n p)! =0 F 2 (ψ, p, n) = ( qµ p p ψ qd p p)+q p t + qr! =0 F 3 (ψ, p, n) = ( qµ n n ψ + qd n n) q n t qr! =0 Integration over each box

31 Scharfetter-Gummel Discretization Neglecting recombination and assuming a constant current density through the device Boundary values and Analytic solution Analytic solution serves as Ansatz function Scharfetter-Gummel discretization

32 Spatial Discretization Exponential fitting for drift-diffusion (F2 and F3) Scharfetter-Gummel discretization with generalized Einstein relation and density- and fielddependent mobility System of (3 x n) strongly coupled equations F 1 ( x) F ( x) = F 2 ( x) F 3 ( x) x = ψ 1 : ψ n n 1 : n n p 1 : p n Dirichlet boundary conditions: Values for potential and carriers given at electrodes

33 Variables sets Problem Formulation carrier concentrations (ψ, p, n) quasi-fermi level (ψ, φ p, φ n ) Assumption: Boltzmann statistics ( ) q(φp ψ) p = n int,eff exp kt ( ) q(ψ φn ) n = n int,eff exp kt Slotboom (ψ, Φ p, Φ n ) ( ) qφp Φ p = exp kt ( ) qφn Φ n = exp kt ( ) qψ p = p i Φ p exp kt ( ) qψ n = n i Φ n exp kt

34 Discretized Equations De-coupled solving Gummel algorithm F3 F2 F1 } Coupled solving Newton algorithm Find x* so that F(x*)=0. F(x) = F(x * ) + J(x * )(x " x * ) $ #F 1 (x)! #F (x) ' 1 & #x 1 #x ) & N ) J(x) = & " # " #F N (x)! #F (x) ) & N ) %& #x 1 #x N () Taylor Series Jacobian Matrix * x k +1 = x k " J(x k ) "1 F(x k ) Iteration function F1 F2 F3 }

35 Algorithms Gummel steady-state transient Newton steady-state transient Initial guess no bias applied, Boltzmann approximation Gummel steady-state Damping Newton Damping Homotopy

36 Convergence - Steady State L2-Norm: F = n F k 2 k=1 #!! %&'()*+)',)./00,*01)*23,45 '!! '!!( '!!'! )*23, ,9*1/41!":&; <7=,9,45 >?)@ 1!!"#!"$!"%!"& ' )*+,-* 1 1$!'&*23&43*) #!!" #!!#! #!!#" Gummel Newton #!!$!! " #! #" $! -.)*/.-&'0

37 Convergence - Steady State F = n L2-Norm: F k 2 k=1 #! #! 3*+4'(5'+6' /./00,*01)*23,45 '!! '!!( '!!'! )*23, ,9*1/41!":&; <7=,9,45 >?)@ 1!!"#!"$!"%!"& ' )*+,-* 1 -$!+*(./*0/(',%122. #! " #!! #!!" Gummel Newton Convergence for Gummel and Newton algorithm Fewer iterations needed for Newton algorithm #!!#! /! " #! #" $! %&'()&%*+,

38 Transient Simulations Implicit Euler time step

39 Modeling of charge carrier transport Bipolar Gummel solver Newton solver Injection Organic material properties Disorder (Gaussian DOS) Mobility Generalized Einstein relation Traps (Exponential DOS) Multilayer OLEDs Exciton dynamics Parameter extraction Coupling to optical model Impedance simulations Outlook

40 Exciton Dynamics!!! Poisson Equation Charge Current Charge Continuity!! Exciton Current Exciton Continuity! Light-emission (from dipoles) & Light-incoupling Electro-optical Coupling Terms Opto-electronic Coupling Terms Extended version of the models published by Ruhstaller et al., J. Appl. Phys. 89, 4575, (2001) and Ruhstaller et al., IEEE JSTQE 9, (3) 723, (2003)

41 Outlook Modeling of charge carrier transport (1st generation) Gummel Newton Bipolar (1st generation) Injection (2nd generation) Organic material properties Disorder (2nd generation) Mobility (2n generation) Generalized Einstein relation (2nd generation) Traps (2nd generation) Multilayer OLEDs (1st generation) Exciton dynamics (1st generation) Parameter extraction Optical simulations Impedance simulations

42 Acknowledgement We acknowledge the financial support of RF7 Thanks for your attention!

Drift diffusion simulation of organic semiconducting devices

Drift diffusion simulation of organic semiconducting devices Bachelor Research Project Drift diffusion simulation of organic semiconducting devices J.A. Postma July 2014 Supervisors: Dr. R.W.A. Havenith N.J. van der Kaap Dr. L.J.A. Koster Abstract This report contains

More information

Modeling Electronic and Excitonic Processes in OLED Devices

Modeling Electronic and Excitonic Processes in OLED Devices Modeling Electronic and Excitonic Processes in OLED Devices Beat Ruhstaller 1,2 1 Fluxim AG, Switzerland 2 Zurich Univ. of Applied Sciences, Inst. of Computational Physics, Switzerland TADF Summer School

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,9 116, 12M Open access books available International authors and editors Downloads Our authors

More information

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005 Organic Device Simulation Using Silvaco Software Silvaco Taiwan September 2005 Organic Devices Simulation: Contents Introduction Silvaco TCAD Simulator Theory Models OTFT Simulation v.s Measurement OLED

More information

Electron traps in organic light-emitting diodes

Electron traps in organic light-emitting diodes JOURNAL OF APPLIED PHYSICS 97, 114502 2005 Electron traps in organic light-emitting diodes Min-Jan Tsai and Hsin-Fei Meng a Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan, Republic

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes

MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes Version Date: 2015.11.13. Last updated 2016.08.16. 1 USER CASE 2 3 4 CHAIN OF MODELS PUBLICATION ON THIS SIMULATION ACCESS

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

Numerical Modeling; Thickness Dependence of J-V Characteristic for Multi-Layered OLED Device

Numerical Modeling; Thickness Dependence of J-V Characteristic for Multi-Layered OLED Device 1756 INVITED PAPER Special Section on Electronic Displays Numerical Modeling; Thickness Dependence of J-V Characteristic for Multi-Layered OLED Device Sang-Gun LEE a, Hong-Seok CHOI, Chang-Wook HAN, Seok-Jong

More information

Numerical model of planar heterojunction organic solar cells

Numerical model of planar heterojunction organic solar cells Article Materials Science July 2011 Vol.56 No.19: 2050 2054 doi: 10.1007/s11434-011-4376-4 SPECIAL TOPICS: Numerical model of planar heterojunction organic solar cells MA ChaoZhu 1 PENG YingQuan 12* WANG

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

No. 7 Numerical investigations on the current conduction in posed a numerical model for gle layer OLEDs on the basis of trapped charge limited

No. 7 Numerical investigations on the current conduction in posed a numerical model for gle layer OLEDs on the basis of trapped charge limited Vol 12 No 7, July 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/1207)/0796-07 Chinese Physics and IOP Publishing Ltd Numerical investigations on the current conduction in bilayer organic light-emitting

More information

8. Schottky contacts / JFETs

8. Schottky contacts / JFETs Technische Universität Graz Institute of Solid State Physics 8. Schottky contacts / JFETs Nov. 21, 2018 Technische Universität Graz Institute of Solid State Physics metal - semiconductor contacts Photoelectric

More information

2.626 Fundamentals of Photovoltaics

2.626 Fundamentals of Photovoltaics MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Charge Separation:

More information

Semiconductor Module

Semiconductor Module Semiconductor Module Optics Seminar July 18, 2018 Yosuke Mizuyama, Ph.D. COMSOL, Inc. The COMSOL Product Suite Governing Equations Semiconductor Schrödinger Equation Semiconductor Optoelectronics, FD Semiconductor

More information

A Comprehensive Multiphysics Model for Organic Photovoltaics. A Comprehensive Multiphysics Model for Organic Photovoltaics

A Comprehensive Multiphysics Model for Organic Photovoltaics. A Comprehensive Multiphysics Model for Organic Photovoltaics A Comprehensive Multiphysics Model for Organic Photovoltaics Zi Shuai Wang, Wei E. I. Sha, and Wallace C. H. Choy Presenter: Wei E. I. Sha Email: wsha@eee.hku.hk Website: http://www.eee.hku.hk/~wsha Department

More information

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor device structures are traditionally divided into homojunction devices 0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting

More information

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping Avalanche breakdown Impact ionization causes an avalanche of current Occurs at low doping Zener tunneling Electrons tunnel from valence band to conduction band Occurs at high doping Tunneling wave decays

More information

Electronics go everywhere

Electronics go everywhere The Chemistry, Physics and Engineering of Organic Light Emitting Diodes George G. Malliaras Department of Materials Science and Engineering Cornell University Electronics go everywhere Pioneer e-ink &

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.1: Overview of Organic Photovoltaic Devices Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

Metal Semiconductor Contacts

Metal Semiconductor Contacts Metal Semiconductor Contacts The investigation of rectification in metal-semiconductor contacts was first described by Braun [33-35], who discovered in 1874 the asymmetric nature of electrical conduction

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara Charge Extraction from Complex Morphologies in Bulk Heterojunctions Michael L. Chabinyc Materials Department University of California, Santa Barbara OPVs Vs. Inorganic Thin Film Solar Cells Alta Devices

More information

Investigation of tunneling effects modeling in degenerate semiconductors

Investigation of tunneling effects modeling in degenerate semiconductors Journal of Materials and Environmental Sciences ISSN : 08-508 Copyright 017, University of Mohammed 1er Oujda Morocco JMES, 017 Volume 8, Issue 3, Page 809-815 http://www.jmaterenvironsci.com ICMES016,

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

Lecture 8 - Carrier Drift and Diffusion (cont.), Carrier Flow. February 21, 2007

Lecture 8 - Carrier Drift and Diffusion (cont.), Carrier Flow. February 21, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 8-1 Lecture 8 - Carrier Drift and Diffusion (cont.), Carrier Flow February 21, 2007 Contents: 1. Quasi-Fermi levels 2. Continuity

More information

Organic Molecular Solids

Organic Molecular Solids Markus Schwoerer, Hans Christoph Wolf Organic Molecular Solids BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Contents 1 Introduction 1 1.1 What are Organic Solids? 1 1.2 What are the Special

More information

Effect of non-uniform distribution of electric field on diffusedquantum well lasers

Effect of non-uniform distribution of electric field on diffusedquantum well lasers Title Effect of non-uniform distribution of electric field on diffusedquantum well lasers Author(s) Man, WM; Yu, SF Citation IEEE Hong Kong Electron Devices Meeting Proceedings, Hong Kong, China, 29 August

More information

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M. University of Groningen Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M. Published in: Physical Review. B: Condensed Matter and Materials

More information

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL Solid State Physics SEMICONDUCTORS - IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a p-type semiconductor, i.e. n h >> n e. (1) Create a local

More information

Effect of doping on performance of organic solar cells

Effect of doping on performance of organic solar cells 1 Effect of doping on performance of organic solar cells V. A. Trukhanov, V.V. Bruevich, D.Yu. Paraschuk International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow

More information

Lecture 9 - Carrier Drift and Diffusion (cont.), Carrier Flow. September 24, 2001

Lecture 9 - Carrier Drift and Diffusion (cont.), Carrier Flow. September 24, 2001 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 9-1 Lecture 9 - Carrier Drift and Diffusion (cont.), Carrier Flow September 24, 2001 Contents: 1. Quasi-Fermi levels 2. Continuity

More information

Carrier heating in disordered organic semiconductors

Carrier heating in disordered organic semiconductors Carrier heating in disordered organic semiconductors Yevgeni Preezant and Nir Tessler* Microelectronic & Nanoelectronic Centers, Electrical Engineering Department, Technion Israel Institute of Technology,

More information

From Order to Disorder

From Order to Disorder ORGANIC ELECTRONICS Principles, devices and applications Charge Transport D. Natali Milano, 15-18 Novembre 011 From Order to Disorder From delocalized to localized states 1 The Two-Site approximation a,v

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

8.1 Drift diffusion model

8.1 Drift diffusion model 8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL February 9 and 14, 2012 The University of Toledo, Department

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/ OLEDs Basic principles, technology and applications Sébastien FORGET Laboratoire de Physique des Lasers Université Paris Nord P13 www-lpl.univ-paris13.fr:8088/lumen/ Paris Nord University (Paris 13) This

More information

DRIFT-DIFFUSION SYSTEMS: VARIATIONAL PRINCIPLES AND FIXED POINT MAPS FOR STEADY STATE SEMICONDUCTOR MODELS

DRIFT-DIFFUSION SYSTEMS: VARIATIONAL PRINCIPLES AND FIXED POINT MAPS FOR STEADY STATE SEMICONDUCTOR MODELS DRIFT-DIFFUSION SYSTEMS: VARIATIONAL PRINCIPLES AND FIXED POINT MAPS FOR STEADY STATE SEMICONDUCTOR MODELS Joseph W. Jerome Department of Mathematics Northwestern University Evanston, IL 60208 Abstract

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs

MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs Abstract MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs Marta M. D. Ramos, Helena M. G. Correia, R. Mendes Ribeiro Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Schottky Diodes (M-S Contacts)

Schottky Diodes (M-S Contacts) Schottky Diodes (M-S Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metal-semiconductor (M) contact plays a very important

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

Simulating Temperature Effects in Multi-dimensional Silicon Devices with Generalized Boundary Conditions

Simulating Temperature Effects in Multi-dimensional Silicon Devices with Generalized Boundary Conditions SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4 Edited by W.Fichtner,D.Aemmcr - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre Simulating Temperature Effects in Multi-dimensional Silicon

More information

Crosslight Software Overview, New Features & Updates. Dr. Peter Mensz

Crosslight Software Overview, New Features & Updates. Dr. Peter Mensz 1 Crosslight Software Overview, New Features & Updates Dr. Peter Mensz 2 Device Simulators Lastip/Pics3d Laser diode FEM models in 2D/3D Apsys 2D and 3D Any other compound semiconductors device FEM models,

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Simulation of Quantum Dot p-i-n Junction Solar Cell using Modified Drift Diffusion Model

Simulation of Quantum Dot p-i-n Junction Solar Cell using Modified Drift Diffusion Model International Journal of Pure and Applied Physics. ISSN 0973-1776 Volume 13, Number 1 (017), pp. 59-66 Research India Publications http://www.ripublication.com Simulation of Quantum Dot p-i-n Junction

More information

Lecture 15 The pn Junction Diode (II)

Lecture 15 The pn Junction Diode (II) Lecture 15 The pn Junction Diode (II I-V characteristics Forward Bias Reverse Bias Outline Reading Assignment: Howe and Sodini; Chapter 6, Sections 6.4-6.5 6.012 Spring 2007 Lecture 15 1 1. I-V Characteristics

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 Numerical simulation of carrier transport in semiconductor devices

More information

Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells

Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells A. Kanevce, M. Gloeckler, A.O. Pudov, and J.R. Sites Physics Department, Colorado State University, Fort Collins, CO 80523,

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Fundamentals of Semiconductor Physics

Fundamentals of Semiconductor Physics Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of

More information

3. Two-dimensional systems

3. Two-dimensional systems 3. Two-dimensional systems Image from IBM-Almaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological

More information

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 7-1 Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

Breaking the Space Charge Limit in Organic Semiconductors by Novel Plasmon-Electrical Concept

Breaking the Space Charge Limit in Organic Semiconductors by Novel Plasmon-Electrical Concept Breaking the Space Charge Limit in Organic Semiconductors by Novel Plasmon-Electrical Concept Wallace C.H. Choy, Wei E.I. Sha, Xuanhua Li, and Hugh L. Zhu Presenter: Wei E.I. Sha Email: wsha@eee.hku.hk

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

How does a polymer LED OPERATE?

How does a polymer LED OPERATE? How does a polymer LED OPERATE? Now that we have covered many basic issues we can try and put together a few concepts as they appear in a working device. We start with an LED:. Charge injection a. Hole

More information

PHYS208 p-n junction. January 15, 2010

PHYS208 p-n junction. January 15, 2010 1 PHYS208 p-n junction January 15, 2010 List of topics (1) Density of states Fermi-Dirac distribution Law of mass action Doped semiconductors Dopinglevel p-n-junctions 1 Intrinsic semiconductors List of

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: In-situ measurement of electric-field screening in hysteresis-free PTAA/ FA.83 Cs.7 Pb(I.83 Br.7 ) 3 /C6 perovskite solar cells gives an ion mobility of ~3 x -7 cm /Vs; to

More information

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 8-1 Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

Concepts & Equations. Applications: Devices

Concepts & Equations. Applications: Devices Concepts & Equations Applications: Devices Concepts & Equations Applications: Devices Current = (charge) x (velocity) Ch1-4 Ch5-6 Concepts & Equations Applications: Devices Concepts & Equations Ch1 Landscape

More information

Electrical Characteristics of Multilayer MoS 2 FET s

Electrical Characteristics of Multilayer MoS 2 FET s Electrical Characteristics of Multilayer MoS 2 FET s with MoS 2 /Graphene Hetero-Junction Contacts Joon Young Kwak,* Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Nini Munoz, Brian Schutter, and Michael

More information

Part 1: MetalMetal Contacts Workfunction Differences Flat band (a) (Pt) = 5.36 ev Pt Vacuum Fermi level Electrons Mo Vacuum Fermi level Electrons (Mo)

Part 1: MetalMetal Contacts Workfunction Differences Flat band (a) (Pt) = 5.36 ev Pt Vacuum Fermi level Electrons Mo Vacuum Fermi level Electrons (Mo) Applications Using Band Diagrams and Fermi Energy Level Applications to Devices Physics Physics Homojunctions Heterojunctions pn junction metals/c junctions diodes pnp junction pnp Bipolar transistors

More information

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation Journal of Engineering Science and Technology Review 2 (1) (2009) 157-164 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org A study of the silicon Bulk-Barrier Diodes

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

1 Hot Electron Modeling I: Extended Drift Diffusion Models

1 Hot Electron Modeling I: Extended Drift Diffusion Models ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices Numerical Methods and Simulation / Umberto Ravaioli Review of Conventional Semiconductor Device Models Based on Partial Differential

More information

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure ARGYRIOS C. VARONIDES Physics and Electrical Engineering Department University of Scranton 800 Linden

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

SEMICONDUCTOR PHYSICS REVIEW BONDS,

SEMICONDUCTOR PHYSICS REVIEW BONDS, SEMICONDUCTOR PHYSICS REVIEW BONDS, BANDS, EFFECTIVE MASS, DRIFT, DIFFUSION, GENERATION, RECOMBINATION February 3, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles

More information

On the Numerics of 3D Kohn-Sham System

On the Numerics of 3D Kohn-Sham System On the of 3D Kohn-Sham System Weierstrass Institute for Applied Analysis and Stochastics Workshop: Mathematical Models for Transport in Macroscopic and Mesoscopic Systems, Feb. 2008 On the of 3D Kohn-Sham

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 The driving force dependence of charge Carrier dynamics in donor-acceptor

More information

Scharfetter Gummel Schemes for Non-Boltzmann Statistics

Scharfetter Gummel Schemes for Non-Boltzmann Statistics Scharfetter Gummel Schemes for Non-Boltzmann Statistics Patricio Farrell Weierstrass Institute (WIAS) Joint work with: T. oprucki, J. Fuhrmann, N. Rotundo, H. Doan ECMI 2016 Numerical methods for interesting

More information

Opto-electronic characterization of third generation solar cells

Opto-electronic characterization of third generation solar cells Martin Neukom, Simon Züfle, Sandra Jenatsch and Beat Ruhstaller 1. Measurement techniques 1.1. Transient photocurrent decay In the manuscript we presented transient photocurrent simulations with rise and

More information

Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Extraction Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 2.626/2.627 Roadmap You Are Here 2.626/2.627: Fundamentals Every photovoltaic device

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

Effects of Scaling on Modeling of Analog RF MOS Devices

Effects of Scaling on Modeling of Analog RF MOS Devices Effects of Scaling on Modeling of Analog RF MOS Devices Y. Liu, S. Cao, T.-Y. Oh 1, B. Wu, O. Tornblad 2, R. Dutton Center for Integrated Systems, Stanford University 1 LG Electronics 2 Infineon Technologies

More information

On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells

On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells Yuan He Irene M. Gamba Heung-Chan Lee Kui Ren arxiv:1511.417v1 [math.ap] 2 Nov 215 November 3, 215

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Thickness scaling of space-charge-limited currents in organic layers with field- or density-dependent mobility

Thickness scaling of space-charge-limited currents in organic layers with field- or density-dependent mobility Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original Paper phys. stat. sol. (a), 1 6 (26) / DOI 1.12/pssa.2622248

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Basic Ingradients in Device Simulation

Basic Ingradients in Device Simulation Basic Ingradients in Device Simulation Device Simulation and Characterization Boundary conditions Initial guess Models Mobility Recomb. Lifetime PDE s DD, EB, LT Analysis DC, AC, Transient Impact ionization

More information

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

Index. buried oxide 35, 44 51, 89, 238 buried channel 56 Index A acceptor 275 accumulation layer 35, 45, 57 activation energy 157 Auger electron spectroscopy (AES) 90 anode 44, 46, 55 9, 64, 182 anode current 45, 49, 65, 77, 106, 128 anode voltage 45, 52, 65,

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

FYS3410 Condensed matter physics

FYS3410 Condensed matter physics FYS3410 Condensed matter physics Lecture 23 and 24: pn-junctions and electrooptics Randi Haakenaasen UniK/UiO Forsvarets forskningsinstitutt 11.05.2016 and 18.05.2016 Outline Why pn-junctions are important

More information

Atlas III-V Advanced Material Device Modeling

Atlas III-V Advanced Material Device Modeling Atlas III-V Advanced Material Device Modeling Requirements for III-V Device Simulation Blaze as Part of a Complete Simulation Toolset III-V Device Simulation maturity has conventionally lagged behind silicon

More information