Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Size: px
Start display at page:

Download "Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi"

Transcription

1 Charge Extraction Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

2 2.626/2.627 Roadmap You Are Here

3 2.626/2.627: Fundamentals Every photovoltaic device must obey: Conversion Efficiency Output Energy Input Energy For most solar cells, this breaks down into: Inputs Outputs Solar Spectrum Light Absorption Charge Excitation Charge Drift/Diff usion Charge Separation Charge Collection total absorption excitation drift/diffusion separation collection

4 Liebig s Law of the Minimum S. Glunz, Advances in Optoelectronics (2007) Image by S. W. Glunz. License: CC-BY. Source: High-Efficiency Crystalline Silicon Solar Cells. Advances in OptoElectronics (2007). total absorption excitation drift/diffusion separation collection

5 Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures.

6 Contacts extract carriers from device. prevent back-diffusion of carriers into device. are studied extensively in the semiconductor industry (several good review papers) for common semiconductors. are semiconductor-specific: While fundamentals generally apply universally, the devil is in the details, and each material system requires individual optimization. are influenced heavily by surface states (i.e., repeatable surface preparation is a must!)

7 Materials Commonly Used for Contacts Metals Optically opaque. Electrically conductive. Transparent Conducting Oxides (TCOs) Optically transparent. Electrically conductive.

8 Properties of TCOs Transparency Conductivity ( ) 1 Quartz Glass Si Ge ITO Ag Transparency 0 0 Visible Energy of light (ev) -18 Insulator Semi conductor -6-2 log (S/cm) = n e 2 Metal 6 Transmittance: > 80% (Films) Range: 400 ~ 700 nm Band gap > 3.1eV n - carrier conc. (cm -3 ) - mobility (cm 2 /Vs) e - charge per carrier

9 How TCOs Work CB E E F E 1 = Large E 3 = very small E 2 = Large VB x

10 Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures.

11 Equivalent Circuit: Simple Case Lin Scale V ja J 0 V Current Density (ma/cm2) 1.E+00 8.E-01 6.E-01 4.E-01 2.E-01 0.E+00 I-V Curve Voltage (V) J J 0 exp qv 1 J kt L Current Density (ma/cm2) 1.E+00 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 Log Scale I-V Curve Voltage (V)

12 Equivalent Circuit: Simple Case V ja J 0 R s V Current Density (ma/cm2) 5.E-02 4.E-02 3.E-02 2.E-02 1.E-02 0.E+00 I-V Curve Voltage (V) J J 0 exp q V JR s kt 1 J L Current Density (ma/cm2) 1.E+00 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 I-V Curve Voltage (V)

13 Equivalent Circuit: Simple Case V ja J 0 R s R sh V Current Density (ma/cm2) 5.E-02 4.E-02 3.E-02 2.E-02 1.E-02 0.E+00 I-V Curve Voltage (V) J J 0 exp q V JR s kt 1 V JR s R sh J L Current Density (ma/cm2) 1.E+00 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 I-V Curve Voltage (V)

14 Equivalent Circuit: Simple Case R s J 0 V ja R sh V J J 0 exp q V JR s kt 1 V JR s R sh J L Courtesy of PVCDROM. Used with permission. Firing contacts? Three possibilities: 1. Contact just right: low R s, large R sh. 2. Underfired contact: Poor contact with Si, large R s. 3. Overfired contact: Metal drives too deep into Si, low R sh.

15 Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Type 1, 2, 3, and 4 junctions). 6. Sketch common solar cell device architectures.

16 Classes of Contacts Ohmic: Ohmic and Schottky Contacts Linear I-V curve. Typically used when charge separation is not a goal for metallization. Schottky: Current (a.u.) + 0 Schottky Ohmic Exponential I-V curve. - Used when charge separation is desired Voltage (a.u.)

17 Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures.

18 Step #1: Schottky Theory (the ideal case)

19 Contacts: Schottky Model E Vacuum E C q c q f M E F E V x Semiconductor Metal

20 Contacts: Schottky Model E Vacuum q c q f M E C E F E V x Semiconductor Metal

21 Contacts: Schottky Model For Ohmic contact: f m > f s Barrier Height: f b = f m - c Contact Potential: V bi = f m - f s Space-charge region width: W 2 s qn D V o Courtesy of Tesfaye Ayalew. Used with permission.

22 Classes of Contacts Ohmic: Electron barrier height 0 (for n-type) Linear I-V curve. Typically used when charge separation is not a goal for metallization. Schottky: Electron barrier height > 0 (for p-type) Exponential I-V curve. Used when charge separation is desired. Current (a.u.) Ohmic and Schottky Contacts Voltage (a.u.) Schottky Ohmic

23 Evaluating Metals for Contacts - Schottky Model Courtesy of Tesfaye Ayalew. Used with permission.

24 Reality: Deviations from Schottky theory Substantial deviations from Schottky theory are possible, due to interface effects including: Orientation-dependent surface states. Elemental nature of surface termination in binary compounds (e.g., A or B element?). Interface dipoles. and more Courtesy of Tesfaye Ayalew. Used with permission.

25 Role of Surface States For related visuals, please see the lecture 9 video or the reference below. D.K. Schroder, IEEE Trans. Electron Dev. 31, 637 (1984)

26 Contacts: Schottky Model For Ohmic contact: f m > f s Barrier Height: f b = f m - c Contact Potential: V bi = f m - f s Space-charge region width: W 2 s qn D V o Courtesy of Tesfaye Ayalew. Used with permission.

27 Thermionic Emission & Field Emission Effects For related visuals, please see the lecture 9 video or the reference below. D.K. Schroder, IEEE Trans. Electron Dev. 31, 637 (1984)

28 Evaluating Metals for Contacts - Practical Sources: Reference books Review articles Scientific articles Trusted websites NB: Surface states matter!! Be sure you have repeatable surface preparation.

29 Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures.

30 Evaluating Heterojunctions Not always possible to dope a material both n- and p-type. Not always possible to find the perfect contact material. Need: heterojunction. (At least) three types of heterojunction: What junction will separate charge?

31 Evaluating Heterojunctions E Simplest case (analogy to Schottky band alignment for metalsemiconductor contacts): 1- Set chemical potential equal across entire device. 2- Then, align vacuum levels. 3- Note that VB and CB must follow vacuum levels. x

32 Evaluating Heterojunctions Simplest case (analogy to Schottky band alignment for metalsemiconductor contacts): 1- Set chemical potential equal across entire device. 2- Then, align vacuum levels. 3- Note that VB and CB must follow vacuum levels.

33 MIT OpenCourseWare / Fundamentals of Photovoltaics Fall 2013 For information about citing these materials or our Terms of Use, visit:

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Toward a 1D Device Model Part 1: Device Fundamentals

Toward a 1D Device Model Part 1: Device Fundamentals Toward a 1D Device Model Part 1: Device Fundamentals Lecture 7 9/29/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 Learning Objectives: Toward a 1D Device Model 1.

More information

2.626 Fundamentals of Photovoltaics

2.626 Fundamentals of Photovoltaics MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Review: Fundamentals

More information

Toward a 1D Device Model Part 2: Material Fundamentals

Toward a 1D Device Model Part 2: Material Fundamentals Toward a 1D Device Model Part 2: Material Fundamentals Lecture 8 10/4/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627:

More information

2.626 / 2.627: Fundamentals of Photovoltaics Problem Set #3 Prof. Tonio Buonassisi

2.626 / 2.627: Fundamentals of Photovoltaics Problem Set #3 Prof. Tonio Buonassisi 2.626 / 2.627: Fundamentals of Photovoltaics Problem Set #3 Prof. Tonio Buonassisi Please note: Excel spreadsheets or Matlab code may be used to calculate the answers to many of the problems below, but

More information

Lecture 5 Junction characterisation

Lecture 5 Junction characterisation Lecture 5 Junction characterisation Jon Major October 2018 The PV research cycle Make cells Measure cells Despair Repeat 40 1.1% 4.9% Data Current density (ma/cm 2 ) 20 0-20 -1.0-0.5 0.0 0.5 1.0 Voltage

More information

2.626 Fundamentals of Photovoltaics

2.626 Fundamentals of Photovoltaics MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Charge Separation:

More information

Schottky Diodes (M-S Contacts)

Schottky Diodes (M-S Contacts) Schottky Diodes (M-S Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Wednesday, October 30, 013 1 Introduction Chapter 4: we considered the

More information

2.626 Fundamentals of Photovoltaics

2.626 Fundamentals of Photovoltaics MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Charge Separation:

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Metal Semiconductor Contacts

Metal Semiconductor Contacts Metal Semiconductor Contacts The investigation of rectification in metal-semiconductor contacts was first described by Braun [33-35], who discovered in 1874 the asymmetric nature of electrical conduction

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

8. Schottky contacts / JFETs

8. Schottky contacts / JFETs Technische Universität Graz Institute of Solid State Physics 8. Schottky contacts / JFETs Nov. 21, 2018 Technische Universität Graz Institute of Solid State Physics metal - semiconductor contacts Photoelectric

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

Module-6: Schottky barrier capacitance-impurity concentration

Module-6: Schottky barrier capacitance-impurity concentration 6.1 Introduction: Module-6: Schottky barrier capacitance-impurity concentration The electric current flowing across a metal semiconductor interface is generally non-linear with respect to the applied bias

More information

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping Avalanche breakdown Impact ionization causes an avalanche of current Occurs at low doping Zener tunneling Electrons tunnel from valence band to conduction band Occurs at high doping Tunneling wave decays

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

3. Two-dimensional systems

3. Two-dimensional systems 3. Two-dimensional systems Image from IBM-Almaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V.

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V. Fundamentals of Photovoltaics: C1 Problems R.Treharne, K. Durose, J. Major, T. Veal, V. Dhanak @cdtpv November 3, 2015 These problems will be highly relevant to the exam that you will sit very shortly.

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Figure 3.1 (p. 141) Figure 3.2 (p. 142) Figure 3.1 (p. 141) Allowed electronic-energy-state systems for two isolated materials. States marked with an X are filled; those unmarked are empty. System 1 is a qualitative representation of a metal;

More information

3.003 Principles of Engineering Practice

3.003 Principles of Engineering Practice 3.003 Principles of Engineering Practice One Month Review Solar Cells The Sun Semiconductors pn junctions Electricity 1 Engineering Practice 1. Problem Definition 2. Constraints 3. Options 4. Analysis

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 E

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

Quiz #1 Due 9:30am Session #10. Quiz Instructions

Quiz #1 Due 9:30am Session #10. Quiz Instructions 2.626/2.627 Fall 2011 Fundamentals of Photovoltaics Quiz #1 Due 9:30am Session #10 Quiz Instructions The undergraduate version of this quiz (2.627) consists of four (4) multipart questions for a point

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary Information for Novel High-Efficiency Crystalline-Si-Based Compound

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 17 th of Jan 14 Metal-Semiconductor

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL February 9 and 14, 2012 The University of Toledo, Department

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metal-semiconductor (M) contact plays a very important

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure ARGYRIOS C. VARONIDES Physics and Electrical Engineering Department University of Scranton 800 Linden

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013 Sample Exam # 2 ECEN 3320 Fall 203 Semiconductor Devices October 28, 203 Due November 4, 203. Below is the capacitance-voltage curve measured from a Schottky contact made on GaAs at T 300 K. Figure : Capacitance

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

EE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level

EE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level EE 13 Intro to S Junctions eek 6 Notes Problem 1 hat is the work function? Energy to ecite electron from Fermi level to the vacuum level Electron affinity of 4.5eV Electron affinity of Ge 4.eV orkfunction

More information

LN 3 IDLE MIND SOLUTIONS

LN 3 IDLE MIND SOLUTIONS IDLE MIND SOLUTIONS 1. Let us first look in most general terms at the optical properties of solids with band gaps (E g ) of less than 4 ev, semiconductors by definition. The band gap energy (E g ) can

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Role of surface effects in mesoscopic

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

Thermionic emission vs. drift-diffusion vs. p-n junction

Thermionic emission vs. drift-diffusion vs. p-n junction 6.772/SMA5111 - Compound Semiconductors Lecture 4 - Carrier flow in heterojunctions - Outline A look at current models for m-s junctions (old business) Thermionic emission vs. drift-diffusion vs. p-n junction

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 1 Outlines Photovoltaic Effect Photovoltaic cell structure

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Semiconductor Module

Semiconductor Module Semiconductor Module Optics Seminar July 18, 2018 Yosuke Mizuyama, Ph.D. COMSOL, Inc. The COMSOL Product Suite Governing Equations Semiconductor Schrödinger Equation Semiconductor Optoelectronics, FD Semiconductor

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL March 24, 2015 The University of Toledo, Department of

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

ECE 340 Lecture 35 : Metal- Semiconductor Junctions Class Outline:

ECE 340 Lecture 35 : Metal- Semiconductor Junctions Class Outline: ECE 340 Lecture 35 : - Junctions Class Outline: Ideal - Contacts Rectifying Contacts Ohmic Contacts Things you should know when you leave Key Questions What happens to the bands when we make contact between

More information

PH575 Spring Lecture #20 Semiconductors: optical properties: Kittel Ch. 8 pp ; Ch 15 pp

PH575 Spring Lecture #20 Semiconductors: optical properties: Kittel Ch. 8 pp ; Ch 15 pp PH575 Spring 2014 Lecture #20 Semiconductors: optical properties: Kittel Ch. 8 pp. 187-191; Ch 15 pp. 435-444 Figure VI-1-1: Different types of optical absorption phenomena; (1) transitions of highlying

More information

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics Advanced Physics Lab, PHYS 3600 Don Heiman, Northeastern University, 2017 Today Semiconductors Acoustics Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries Faculty of Science and Technology Exam in: FYS 3028/8028 Solar Energy and Energy Storage Date: 11.05.2016 Time: 9-13 Place: Åsgårdvegen 9 Approved aids: Type of sheets (sqares/lines): Number of pages incl.

More information

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures 034 Chin. Phys. B Vol. 19, No. 5 2010) 057303 Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures Liu Hong-Xia ), Wu Xiao-Feng ), Hu Shi-Gang

More information

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Craig A. Grimes Department of Electrical Engineering Center for Solar Nanomaterials

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL March 20, 2014 The University of Toledo, Department of

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Light Emitting Diodes

Light Emitting Diodes Light Emitting Diodes WWW.LIGHTEMITTINGDIODES.ORG OPTI 500 A FALL 2012, LECTURE 8 Light Emission from Semiconductor Spontaneous radiative transition in direct bandgap semiconductors generate light ~ E

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 4. Crystalline Semiconductor Based Solar Cells ChE-600 Wolfgang Tress, May 2016 1 Photovoltaic Solar Energy Conversion 2 Semiconductor vs. Heat Engine spectral

More information

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime

More information

Comparison of Ge, InGaAs p-n junction solar cell

Comparison of Ge, InGaAs p-n junction solar cell ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs p-n junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online

More information

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance LED access resistances W the output window size p-layer series access resistance d p n-layer series access resistance d n The n-layer series access resistance R = ρ s n where the resistivity of the n-layer

More information

Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008

Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008 Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008 Please read chapter 6 (pp. 175-209) of Advanced Semiconductor Fundamentals by Pierret.

More information

Electronic Devices and Circuits Lecture 5 - p-n Junction Injection and Flow - Outline

Electronic Devices and Circuits Lecture 5 - p-n Junction Injection and Flow - Outline 6.012 - Electronic Devices and Circuits Lecture 5 - p-n Junction Injection and Flow - Outline Review Depletion approimation for an abrupt p-n junction Depletion charge storage and depletion capacitance

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts CIMTEC Forum 2010 (0) 5 pages (0) Trans Tech Publications, Switzerland Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts G. Khrypunov 1, A. Meriuts 1, H. Klochko 1, T.

More information