IBM T.J. Watson Research Center

Size: px
Start display at page:

Download "IBM T.J. Watson Research Center"

Transcription

1 IBM T.J. Watson Research Center 2D material based layer transfer Jeehwan Kim Prof. of Mechanical Engineering Prof. of Materials science and Engineering Jeehwan Kim Research Group

2 Major bottleneck for advancing semiconductor technology Substrate: Essential building block to form Electronic/optoelectronic devices Epitaxial growth: Process for forming device film structures on the substrate FETs, LEDs, Lasers, Detectors Epitaxy of single-crystalline films is required on given available substrates Epitaxial films Substrate SiC, Sapphire Si Ge, GaAs InP Price: SiC > InP > GaAs > Ge >>> Price: Si Limited application Lattice: InP > GaAs/Ge > Si > SiC Defect generation

3 2D material based layer transfer (2DLT) sp 2 -bonded graphene: No broken bonds on the surface Precise release from graphene Post-release treatment NOT required 1 sec release due to weak interaction Universal for any materials

4 Chemical lift-off (Epitaxial lift-off, ELO) Epitaxial Growth Lateral chemical etching of buffer Layer transfer Wafer Epilayer Buffer Wafer Buffer Wafer Epilayer Host sub Substrate reuse Pro: Control of release interface Cons: Post-treatment required Slow release Limited application mainly for GaAs & InP Current U.S. $/ W p(dc) $18.0 $16.0 $14.0 $12.0 $10.0 $8.0 $6.0 $4.0 $2.0 $0.0 For PV applications The Costs for the Epi Substrate as a Func on of Reuse Number Reference Case Repolishing Cost ($8 per repolish per 133 cm 2 wafer) and Cell Efficiency (25%) NREL Cost Analysis 9/13/2013 Reference Case Costs vs Reuses Repolishing Cost (Assuming a Repolish is Needed for Each Growth Cycle) Number of Reuses E. Yablonovitch et al., Appl. Phys. Lett. 51, 2222 (1987). B. M. Kayes et al, IEEE J. Photovolt. 4, 729 (2014).

5 Graphene-based layer transfer (GBLT) sp 2 -bonded graphene: No broken bonds on the surface Precise release from graphene Post-release treatment NOT required 1 sec release due to weak interaction Universal for any materials Meet all requirements

6 Monolayer graphene transparency for epitaxial growth - Remote homoepitaxy Y. Kim, S. Cruz, J. Kim et al., Nature, COVER (2017)

7 DFT calculation HRTEM Dark field XTEM: Strain field Critical interaction gap: 1 nm In collaboration with Prof. Kolpak No sign of dislocation Remote homoepitaxy is possible through graphene Y. Kim, S. Cruz, J. Kim et al., Nature (2017)

8 Unversality of 2DLT (MIT) Growth of single-crystalline GaN, GaAs, InP, GaP, Ge on graphene EBSD mapping

9 Role of graphene Release layer for any semiconductors Dislocation-reducer/filter Release layer 1sec release Wafer Surface protection infinite reuse Wide application of non-si electronics/photonics Enabled heterointegration InP InGaAs GaAs GaN Si wafer

10 Implication for PV technology GaAs substrate

11 Implication for space PV technology III-V multijunction solar cells for E g oriented design Material 4 Eg~1.8eV Material 3 Eg~1.4eV Material 2 Eg~1eV Material 1 Eg~0.6eV Graphene as dislocation reducer/tunnel junction Examples GaInP(1.87eV) GaAs(1.42eV) GaInNAs(1eV) Ge(0.67eV) Si (1.1 ev) III-V substrate III-V substrate

12 Implication for magnetoelectric coupling Graphene transfer Epitaxy of Piezoelectric materials Exfoliation of Piezoelectric materials Piezo Bonding of freestanding Piezomaterials + magnetostrictive matreials SrTiO 3 SrTiO 3 Graphene transfer SrTiO 3 Remote Exfoliation Epitaxy of Maganetostrictive materials Magneto Piezo PDMS No substrate clamping to Maximize effect MgAl 2 O 4 MgAl 2 O 4 MgAl 2 O 4

13 Implication for display/lighting technology Low-cost flexible LEDs (solid state lighting/microled) Red LED (III-V) Blue LED (III-N) Dislocation-free LED on graphene Light emission from LEDs on graphene Dislocation-free GaN obtainable by GaN growth on graphene/gan High efficiency lighting High pixel density microled Y. Kim, S. Cruz, J. Kim et al., Nature cover (2017)

14 Implication for power electronics/heterointegration Power electronics

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups.

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. ICQNM 2014 Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. Cubic: Diamond structures: group IV semiconductors (Si, Ge, C), Cubic zinc-blende structures:

More information

ignature redacted Signature redacted -1 Two-Dimensional Material based Layer Transfer of Thin Film Devices JUN LIBRARIES ARCHIVES by Yunjo Kim

ignature redacted Signature redacted -1 Two-Dimensional Material based Layer Transfer of Thin Film Devices JUN LIBRARIES ARCHIVES by Yunjo Kim Two-Dimensional Material based Layer Transfer of Thin Film Devices by Yunjo Kim B.A.Sc. Nanotechnology Engineering University of Waterloo, 2015 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN

More information

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes John Prineas Department of Physics and Astronomy, University of Iowa May 3, 206 Collaborator: Thomas Boggess Grad Students: Yigit Aytak Cassandra

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

High efficiency silicon and perovskite-silicon solar cells for electricity generation

High efficiency silicon and perovskite-silicon solar cells for electricity generation High efficiency silicon and perovskite-silicon solar cells for electricity generation Ali Dabirian Email: dabirian@ipm.ir 1 From Solar Energy to Electricity 2 Global accumulative PV installed In Iran it

More information

Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems

Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems Daniel C. Law 1,*, R.R. King 1, H. Yoon 1, M.J. Archer 2, A. Boca 1, C.M. Fetzer 1, S. Mesropian

More information

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Nucleation Today s topics Understanding the basics of epitaxial techniques used for surface growth of crystalline structures (films, or layers).

More information

An#- Phase- Boundary Defects in GaAs- on- Si Films: 1. characteriza#on by SHG 2. suppression by ART

An#- Phase- Boundary Defects in GaAs- on- Si Films: 1. characteriza#on by SHG 2. suppression by ART Op=cs of Surfaces & Interfaces (OSI - 9) Chemnitz, Germany September 2, 213 An#- Phase- Boundary Defects in GaAs- on- Si Films: 1. characteriza#on by SHG 2. suppression by ART Farbod Shafiei 1, Ming Lei

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication Plan for Lectures #4, 5, & 6 Theme Of Lectures: Nano-Fabrication Quantum Wells, SLs, Epitaxial Quantum Dots Carbon Nanotubes, Semiconductor Nanowires Self-assembly and Self-organization Two Approaches

More information

Physicists in the Semiconductor Industry

Physicists in the Semiconductor Industry Physicists in the Semiconductor Industry P.M. Mooney IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598 APS March Meeting March 24, 2004 Thomas J. Watson Research Center 1 Outline

More information

Hydrogenated Graphene

Hydrogenated Graphene Hydrogenated Graphene Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Epitaxial Graphene Hydrogen Chemisorbed on Graphene Hydrogen-Intercalated Graphene Outline

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity Supporting Information InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity Doo-Seung Um, Youngsu Lee, Seongdong Lim, Jonghwa Park, Wen-Chun Yen, Yu-Lun

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Syllabus Advanced Nano Materials Semiconductor Physics and Devices Textbook Donald A. Neamen (McGraw-Hill) Semiconductor Physics and Devices Seong Jun Kang Department of Advanced Materials Engineering

More information

Band Gap Engineering. Reading the Periodic Table and Understanding Optical and Electrical Properties in Semiconductors

Band Gap Engineering. Reading the Periodic Table and Understanding Optical and Electrical Properties in Semiconductors The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices

Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices PI: Thomas Jaramillo 1, co-pi: Jim Harris 2 1 Dept. of Chemical Engineering,

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea. SPCC 2018 Hanyang University NEMPL Jin-Goo Park 1,2 *, Jung-Hwan Lee a, In-chan Choi 1, Hyun-Tae Kim 1, Lieve Teugels 3, and Tae-Gon Kim 3 1 Department of Bio-Nano Technology and 2 Materials Science and

More information

The effect of light illumination in photoionization of deep traps in GaN MESFETs buffer layer using an ensemble Monte Carlo simulation

The effect of light illumination in photoionization of deep traps in GaN MESFETs buffer layer using an ensemble Monte Carlo simulation International Journal of Physical Sciences Vol. 6(2), pp. 273-279, 18 January, 2011 Available online at http://www.academicjournals.org/ijps ISSN 1992-1950 2011 Academic Journals Full Length Research Paper

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of ultrathin metal and dielectric films. Our work seeks to: 1) develop and understand the reactions and chemistry that

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of metal, dielectric, ferroelectric, and polymer thin films. We seek to understand and describe nucleation and growth

More information

TFYA23 Crystal Growth Technology

TFYA23 Crystal Growth Technology TFYA23 Crystal Growth Technology Course structure 10 double lectures 2 home assignments 2 laboratories Reporting Written report on the laboratories: SiC growth and characterization, week 49 Problem solutions,

More information

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies.

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies. Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors NAI-CHANG YEH Department of Physics, California Institute of Technology 1. Nanotechnology & nanomaterials -- Functional nanomaterials

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b) PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, 1-501 Shiogamaguchi,

More information

Optical properties of indium phosphide inp

Optical properties of indium phosphide inp JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol., No. -, May - June, p. 7-7 Optical properties of indium phosphide inp J. O. AKINLAMI *, U. G. IKPEOHA Department of Physics, Federal University of

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ Lecture

More information

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY Naoya Miyashita 1, Nazmul Ahsan 1, and Yoshitaka Okada 1,2 1. Research Center

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Ling Xia 1, Vadim Tokranov 2, Serge R. Oktyabrsky

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications 30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications T.-W. Kim, D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Vikram L. Dalal Iowa State University Dept. of Elec. And Comp. Engr Iowa State University. All rights reserved.

Vikram L. Dalal Iowa State University Dept. of Elec. And Comp. Engr Iowa State University. All rights reserved. Growth Chemistry and Its Relationship to Amorphous Si Devices for Photovoltaic Energy Conversion Vikram L. Dalal Iowa State University Dept. of Elec. And Comp. Engr. 2002 Iowa State University. All rights

More information

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary Information for Novel High-Efficiency Crystalline-Si-Based Compound

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University Band Alignment and Graded Heterostructures Guofu Niu Auburn University Outline Concept of electron affinity Types of heterojunction band alignment Band alignment in strained SiGe/Si Cusps and Notches at

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Electrical isolation of n- and p-in 0.53 Ga 0.47 As epilayers using ion irradiation

Electrical isolation of n- and p-in 0.53 Ga 0.47 As epilayers using ion irradiation JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 10 15 NOVEMBER 2003 Electrical isolation of n- and p-in 0.53 Ga 0.47 As epilayers using ion irradiation C. Carmody, a) H. H. Tan, and C. Jagadish Department

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan 10.1149/1.3109626 The Electrochemical Society Thermoelectric and electrical properties of Si-doped InSb thin films H. Nagata a and S. Yamaguchi a,b a Department of Electrical, Electronic and Information

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University 微纳光电子材料与器件工艺原理 Doping 掺杂 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Semiconductor PN Junctions Xing Sheng, EE@Tsinghua LEDs lasers detectors solar

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

3.46 PHOTONIC MATERIALS AND DEVICES Lecture 15: III-V Processing

3.46 PHOTONIC MATERIALS AND DEVICES Lecture 15: III-V Processing 3.46 PHOTONIC MATERIALS AND DEVICES 15: III-V Processing Double Hetero structure laser (band structure engineering) AlGaAs GaAs AlGaAs e - E n hν P h + X n x I d < 1 μm 1. Large refractive index active

More information

Epitaxial Growth of InGaAs and InAlAs

Epitaxial Growth of InGaAs and InAlAs High Growth Temperature Studies of InGaAs/InAlAs Superlattices for High-Quality QCL and QWIP Applications Jiun-Yun Li (a) Fow-Sen Choa, Xiaoming Ji, and Liwei Cheng Department of CSEE University of Maryland

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector

Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector Muhanad A. Ahamed Department of Electrical, Institution of Technology, Baghdad-Iraq. Abstract In the present work, schottky photodiode

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

New materials for high- efficiency spin-polarized. polarized electron source

New materials for high- efficiency spin-polarized. polarized electron source New materials for high- efficiency spin-polarized polarized electron source A. Janotti Metals and Ceramics Division, Oak Ridge National Laboratory, TN In Collaboration with S.-H. Wei, National Renewable

More information

Semi-insulating SiC substrates for high frequency devices

Semi-insulating SiC substrates for high frequency devices Klausurtagung Silberbach, 19. - 21. Feb. 2002 Institut für Werkstoffwissenschaften - WW 6 Semi-insulating SiC substrates for high frequency devices Vortrag von Matthias Bickermann Semi-insulating SiC substrates

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel.

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel. Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilemnau.de thomas.hannappel@tu-ilmenau.de Important Events in Semiconductors History 1833 Michael Faraday discovered temperature-dependent conductivity

More information

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project Feature-level Compensation & Control Process Integration September 15, 2005 A UC Discovery Project Current Milestones Si/Ge-on-insulator and Strained Si-on-insulator Substrate Engineering (M28 YII.13)

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Molecular Solar Cells Progress Report

Molecular Solar Cells Progress Report MolecularSolarCellsProgressReport Investigators Faculty:Prof.PeterPeumans(ElectricalEngineering,Stanford) Graduateresearchers:MukulAgrawal,ShanbinZhao,AlbertLiu,SeungRim,Jung YongLee,JunboWu Summary We

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Theory of Hydrogen-Related Levels in Semiconductors and Oxides

Theory of Hydrogen-Related Levels in Semiconductors and Oxides Theory of Hydrogen-Related Levels in Semiconductors and Oxides Chris G. Van de Walle Materials Department University of California, Santa Barbara Acknowledgments Computations J. Neugebauer (Max-Planck-Institut,

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract Int. J. Nanoelectronics and Materials (009) 89-95 Investigation of the absorption coefficient, refractive index, energy band gap, and film thickness for Al 0. Ga 0.89 N, Al 0.03 Ga 0.97 N, and GaN by optical

More information

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices Physica E 2 (1998) 325 329 Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices D.M. Follstaedt *, R.D. Twesten, J. Mirecki Millunchick, S.R. Lee, E.D. Jones, S.P.

More information

Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method

Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method CHINESE JOURNAL OF PHYSICS VOL. 48, NO. 3 June 2010 Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method H. R. Alaei, 1 H. Eshghi, 2 R. Riedel, 3 and D.

More information

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting diodes S.-H. Park 1, S.-W. Ryu 1, J.-J. Kim 1, W.-P. Hong 1, H.-M Kim 1, J. Park 2, and Y.-T. Lee 3 1 Department

More information

Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays

Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays Dong Liang, * Yijie Huo, Yangsen Kang, Ken Xingze Wang, Anjia Gu, Meiyueh Tan, Zongfu Yu, Shuang Li, Jieyang Jia, Xinyu

More information

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS A. Majid a,b, Samir Alzobaidi a and Thamer Alharbi a a Department of Physics, College of Science, Almajmaah University, P. O. Box no.1712, Al-Zulfi 11932,

More information

Growth optimization of InGaAs quantum wires for infrared photodetector applications

Growth optimization of InGaAs quantum wires for infrared photodetector applications Growth optimization of InGaAs quantum wires for infrared photodetector applications Chiun-Lung Tsai, Chaofeng Xu, K. C. Hsieh, and K. Y. Cheng a Department of Electrical and Computer Engineering and Micro

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

Multijunction Solar Cells on Epitaxial Templates

Multijunction Solar Cells on Epitaxial Templates Multijunction Solar Cells on Epitaxial Templates Thesis by Melissa Jane Archer In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena,

More information

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 Mahdi Ibrahim Maynard H. Jackson High School Atlanta, GA. Faculty Advisor: Dr. Kristin Shepperd Research Group: Prof. Edward Conrad School

More information

Electronic Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy

Electronic Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information