Physics and Material Science of Semiconductor Nanostructures

Size: px
Start display at page:

Download "Physics and Material Science of Semiconductor Nanostructures"

Transcription

1 Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Course website:

2 Lecture 5 Bulk semiconductor growth Single crystal techniques Nanostructure fabrication Epitaxial growth MBE, MOCVD Fabrication techniques Bottom up approaches: self assembly Ref. Ihn Chapter 6

3 Top down approach Mesa-etched dot 1µm~100nm Get a very big piece of wood and carve it into a much smaller model tree (TOP DOWN APPROACH)

4 Top down versus bottom up If we want to make a very small tree we can either Get a very big piece of wood and carve it into a much smaller model tree (TOP DOWN APPROACH) Plant a seed and then control its growth to form a fullyfunctioning bonsai tree (BOTTOM UP APPROACH)

5 Kondo corral STM image Bottom-up method Interference pattern of twodimensional electron gas on Co/Cu(111) D.M.Eigler et al. PRL 86(2001)2392

6 Cleaved-edge overgrowth (CEO) Nanowire growth by MBE

7 V-groove nanowires Pseudowires V-shape due to different etching directions Growth of barrier material Growth of wire material Growth of 2nd barrier material to sharpen groove again wire

8 Short Period-AlGaAs/GaAs quantum wires (QWR) Array Laser Diode with SiO 2 Current Blocking Layer AlGaAs/GaAs QWRs (5x20 nm 2 ) GaAs substrate OUTPUT POWER [mw] SP-QWAL Uncoated facets (200 x 500 m) I th = 143 ma J th = 0.14 ka/cm 2 P max = 9 mw diff = 17 % c = 825 nm Appl. Phys. Lett. 69(7), 955 (1996) IEEE Photon. Tech. Lett. 9(1), 2 (1997) CURRENT [ma]

9 Self-assembly of nanostructures

10 Simple example: Quantum wire growth on periodically-facetted surfaces

11 Quantum wire growth on periodically facetted surfaces The first self-assembly route for semiconductor nanostructure we will consider is the growth of quantum wires on periodically facetted surfaces. To motivate our discussion, we begin with an example: AFM image of self-assembled InGaAs quantum wires grown on a facetted GaAs surface. Quantum wires of this type were incorporated into a semiconductor laser which exhibited linear polarisation of its light output due to the anisotropy of the active region. Ohno et al. J. Vac. Sci. Technol. B, 22, (2004)

12 Reminder: Crystal habit planes The shapes of natural minerals often reflect their underlying crystal symmetry to some extent This is often because the crystals grow with low energy facets forming large areas What happens if we deliberately produce a crystal surface which is at an angle to these low energy facets?

13 Formation of periodically faceted surfaces When the crystal is sliced through at a random angle, many of the atoms are in positions where they cannot fulfill their bonding By reorganising the atoms to form low energy facets, many atoms are now in more energetically favorable positions

14 Example of a periodically facetted surface These STM images shows a TaC(110) surface which has broken up into an array of facets following annealing. The period of the structure along [1-10] is 6a (Image from Zuo et al. Surf. Sci. 301, 233 (1994))

15 Vicinal surfaces and macroscopic step bunching A vicinal surface occurs when a crystal surface is at a small angle to a low Miller index plane. It ideally consists of flat terraces with low Miller indices, with neighbouring terraces separated by equallyspaced steps of monolayer height As with the faceted surfaces we have already discussed, there is an energy associated with each step edge. Hence, it is possible to reduce the overall energy of the system by forming step bunches. However, the contribution of elastic stress to the total energy will again increase as the step bunches get further apart, so again an optimum step spacing exists which minimises the total energy.

16 Vicinal surfaces and macroscopic step bunching: possible configurations Here, the step bunches form 2 facets: the original low index facet and another facet at 90 to that Here, the steps form an array of alternating singular facets (terraces) and vicinal facets. The vicinal facets may reconstruct (i.e. rearrange the atoms) to reduce the local surface energy further.

17 Vicinal surfaces and macroscopic step bunching: Example 200 nm 200 nm STM image of a vicinal Si(111) surface. The net surface orientation is 4 off (111) towards (-211). (7 7) reconstructed terraces and unreconstructed step bunches 10 steps high are observed. From: Williams et al. Surf. Sci. 294, 219 (1993).

18 Heteroepitaxial growth on facetted surfaces The formation of surfaces with nanoscale separation is all very good but to form quantum wires, we need to have regions of a lower bandgap material surrounded by a higher bandgap material. So what happens when we deposit a second material (heteroepitaxy) on our faceted surface? It could cover the surface homogeneously It could form isolated large islands It could form lots of small islands

19 Heteroepitaxial growth on facetted surfaces: quantum wires Often, the periodic facets provide a template for the shape of the islands which are deposited. Hence, quantum wires are formed. Isolated large wire Smaller wires, with a distribution of lengths

20 Influence of interface energy on heteroepitaxial growth mode So, what controls whether we get a homogenous surface layer or the growth of islands? A key factor is the energy of the interface(s) between the periodically faceted substrate surface and the epitaxial layer. If the interface energy is low, the deposited material will tend to wet the substrate i.e. we will get a homogenous coverage. If the interface energy is high, the deposited material will tend to form islands. To derive the equilibrium island shape, we would also need to consider the lattice mismatch between the cluster and the island and the resulting strain energy. In a real system, kinetic effects will also play a role. For instance if diffusion over the surface is slow, this will tend to favour the formation of lots of small clusters, rather than isolated large clusters.

21 Example of quantum wire formation on a periodically facetted surface Efremov et al. (Physica E 23 (2004) ) grew a GaAs quantum wire superlattice on a periodically facetted AlAs(311) surface. Following the growth of an initial layer of GaAs wires, more AlAs is deposited and reforms the originally facetted surface, allowing more layers of wires to be deposited. The left hand image is a high resolution TEM image of the quantum wire array. The right hand image is a simulation of an HRTEM image for an ideal array.

22 Self-assembled quantum dots

23 Formation of InAs quantum dots (S-K mode) InAs (a 0 =6.06 Å) GaAs (a 0 =5.65 Å) (i) (ii) 2D layer growth 2D-3D transition Ripening phase Elastic strain energy stable 2D (i) metastable 2D (ii) S-K morphology 2D + 3D E a (i) Strain exists but lattice matched (ii) Coherently strained defect-free 3D island Growth time W. Seifert et al., J. Crystal. Growth (1997)

24 Typical characteristics of self-assembled In x Ga 1-x As quantum dots formed on GaAs (100) substrate (100) 240K PL Intensity (a. u.) 200K 150K QD 100K ev QW 17K ev Photon Energy (ev) 1.3 Monolayers of InAs, T sub : 500 O C N QD : 3.4 X /cm 2, QD Size : ~ 40 nm => Resulting in irregular positioning and distribution

25 Typical structures of multi-stacked InAs QDs/GaAs S 15 periods (Volcano-like defect) Vertically aligned QDs [001] [110] 6 periods Well aligned

26 Multi-stacked InAs QDs grown by MBE GaAs AlGaAs GaAs InAs Q.D. GaAs Well aligned QD array Large strain high In mole fraction ~ 30 nm Small strain Large strain ~ 55 nm 1.7 ML InAs at 470 C GaAs/AlGaAs at 510 C ~ 6 nm

27 The Structure of QD VCSEL 1.3 m Intermixed QD oxide layer oxide layer top DBR bottom DBR GaAs/Al(Ga)As DBR GaAs/Al(Ga)As DBR GaAs

28 Infra-red Photodetector Using Quantum Dots A maximum responsivity of 4.7 A/W has been recorded at 10 K and bias-voltage 9 V. High responsivity has been seen up to 190 K. Tokyo University, K. Hirakawa lab., Appl. Phys. Lett. 75(10), 1428 (1999)

29 Schematic illustration for selective formation of QDs Sputtering or CVD GaAs (100) substrate Oxide layer PMMA Oxide layer Patterning of PMMA by E-beam Lithography Oxide Mask Electron-beam or laser holography Etching and Removing of PMMA Oxide layer Molecular beam epitaxy Selective growth of QDs (InGaAs) Etching Removal of oxide layer Wetting layer

30 InGaAs QDs Selectively Formed on the Patterned Oxide Layer QDs 0.1 um 0.3 um Ga 2 O 3 QDs GaAs substrate QDs Ga 2 O 3 mask layer

31 Sample structures for selective QD growth using strained SL GaAs 180 ML InAs QDs (2ML) GaAs 20ML GaAs b ML In x Ga 1-x As a ML GaAs buffer 0.5 μm GaAs (001) sub N periods n periods Strained layer - a ML InGaAs/ b ML GaAs SL *Averaged composition is fixed at x=0.2-20ml GaAs (act as barrier) x a 4MLs 2MLs 1ML b 1ML 3MLs 4MLs n N

32 Surface morphologies of the InAs QDs, QWRs (2 o -off (100) GaAs substrates, 1x1 m 2 AFM images ) Changing the thickness of GaAs buffer layer transformation of the terrace width Growing optimal thickness of InAs layer for wirelike QDs Control of interval between wirelike QDs InAs wirelike QDs GaAs buffer GaAs buffer GaAs Buffer 43 ML / 55 nm / 2.0 ML 70 ML / 75 nm / 2.3 ML 120 ML /91 nm / 2.5 ML The thickness of GaAs buffer layer / The terrace width / The optimal thickness of InAs layer

33 Single electron device using self-assembled QDs InAs quantum dots Al lever-arm T = 300 K 200 GaAs cap layer 4 nm InAs QD layer GaAs buffer layer 20 nm S.I. GaAs Substrate Al lever-arm Current (pa) di/dv (ns) InAs quantum dots nm Bias Voltage (V)

34 SET structures using In(Ga)As/GaAs wire-like SAQDs Source Drain Source Gate Drain Control Back Gate Upper Gates Back Gate

35 Synthesis of Nanowires Methods of Nanowire synthesis VLS (Vapour Liquid Solid) method Modification of VLS CVD (Chemical Vapour Deposition) LCG (Laser Ablation catalytic Growth) Low temperature VLS method FLS (Fluid Liquid Solid) mechanism SLS (Solution Liquid Solid) mechanism OAG (Oxide Assisted Growth)

36 Semiconductor nanowires Catalytic (VLS) crystal growth Key features: gold particle liquid Au-InP eutect vapor time nanowire nanoscale diameter (few to 100 nm) High aspect ratio (1-100 micron long) Versatility in composition

37 Possible nanowire structures heterojunctions hollow p-n junctions coaxial

38 Before growth InP wire on SiO 2 Zinc Blende [111] direction 10 nm

39 InP Tubes 200 nm Bakkers et al., JACS 2003, 125, nm Zinc Blende crystal structure

40 50 nm Coaxial wires InP GaP Counts Ga P 200 In Position (nm) Group III modulation

41 Heterojunctions Au GaAs GaAs GaAs GaP GaP GaP 100 nm GaP GaP: 1.8 nm/sec GaAs: 5.0 nm/sec Section length (nm) GaAs GaP Group V modulation Growth time (sec)

42 Heterostructures nanowires (Chemical beam epitaxy, MOVPE) InAs InP InAs Björk et al., NanoLetters 2, 87 (2002) (Samuelson s group Lund) Almost atomically sharp interfaces No strain-induced dislocations (stress can relax at the surface)

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Today Bulk semiconductor growth Single crystal techniques Nanostructure fabrication Epitaxial

More information

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication Plan for Lectures #4, 5, & 6 Theme Of Lectures: Nano-Fabrication Quantum Wells, SLs, Epitaxial Quantum Dots Carbon Nanotubes, Semiconductor Nanowires Self-assembly and Self-organization Two Approaches

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces and Epitaxy on Semiconductor Surfaces Academic and Research Staff Professor Simon G.J. Mochrie, Dr. Ophelia Tsui Graduate Students Seugheon Song, Mirang Yoon 3.1 Introduction Sponsors Joint Services Electronics

More information

Semiconductor Nanowires: Motivation

Semiconductor Nanowires: Motivation Semiconductor Nanowires: Motivation Patterning into sub 50 nm range is difficult with optical lithography. Self-organized growth of nanowires enables 2D confinement of carriers with large splitting of

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide Mat. Res. Soc. Symp. Proc. Vol. 737 2003 Materials Research Society E13.8.1 Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide D. A. Tenne, A. G.

More information

3.46 PHOTONIC MATERIALS AND DEVICES Lecture 15: III-V Processing

3.46 PHOTONIC MATERIALS AND DEVICES Lecture 15: III-V Processing 3.46 PHOTONIC MATERIALS AND DEVICES 15: III-V Processing Double Hetero structure laser (band structure engineering) AlGaAs GaAs AlGaAs e - E n hν P h + X n x I d < 1 μm 1. Large refractive index active

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Course

More information

Ordering of Nanostructures in a Si/Ge 0.3 Si 0.7 /Ge System during Molecular Beam Epitaxy

Ordering of Nanostructures in a Si/Ge 0.3 Si 0.7 /Ge System during Molecular Beam Epitaxy Semiconductors, Vol. 36, No. 11, 22, pp. 1294 1298. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 11, 22, pp. 1379 1383. Original Russian Text Copyright 22 by Cirlin, Egorov, Sokolov,

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion

Nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 37 (24) R163 R178 PII: S22-3727(4)37445- TOPICAL REVIEW Nanoprobing of semiconductor heterointerfaces: quantum

More information

Self-Assembled InAs Quantum Dots on Patterned InP Substrates

Self-Assembled InAs Quantum Dots on Patterned InP Substrates Self-Assembled InAs Quantum Dots on Patterned InP Substrates J. Lefebvre, P.J. Poole, J. Fraser, G.C. Aers, D. Chithrani, and R.L. Williams Institute for Microstructural Sciences, National Research Council

More information

Nanoscience II: Semiconductor nanostructures

Nanoscience II: Semiconductor nanostructures Nanoscience II: Semiconductor nanostructures 11.11.2010 Markku Sopanen MICRONOVA Department of Micro- and Nanosciences Aalto University School of Science andtechnology Acknowledgments: Prof. Harri Lipsanen,

More information

SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES

SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES M.Henini School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K. Tel/Fax: +44 115 9515195/9515180

More information

One-dimensional excitons in GaAs quantum wires

One-dimensional excitons in GaAs quantum wires J. Phys.: Condens. Matter 10 (1998) 3095 3139. Printed in the UK PII: S0953-8984(98)82817-8 REVIEW ARTICLE One-dimensional excitons in GaAs quantum wires Hidefumi Akiyama Institute for Solid State Physics

More information

Heterostructures and sub-bands

Heterostructures and sub-bands Heterostructures and sub-bands (Read Datta 6.1, 6.2; Davies 4.1-4.5) Quantum Wells In a quantum well, electrons are confined in one of three dimensions to exist within a region of length L z. If the barriers

More information

InGaAs-AlAsSb quantum cascade lasers

InGaAs-AlAsSb quantum cascade lasers InGaAs-AlAsSb quantum cascade lasers D.G.Revin, L.R.Wilson, E.A.Zibik, R.P.Green, J.W.Cockburn Department of Physics and Astronomy, University of Sheffield, UK M.J.Steer, R.J.Airey EPSRC National Centre

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

A new approach to AFM investigation of buried Al/In x Ga 1-x As/GaAs interfaces and quantum dots

A new approach to AFM investigation of buried Al/In x Ga 1-x As/GaAs interfaces and quantum dots A new approach to AFM investigation of buried Al/In x Ga 1-x As/GaAs interfaces and quantum dots V. M. Danil tsev, M. N. Drozdov, Yu. N. Drozdov, O. I. Khrykin, V. I. Shashkin, I. Yu. Shuleshova, N. V.

More information

Precise control of size and density of self-assembled Ge dot on Si(1 0 0) by carbon-induced strain-engineering

Precise control of size and density of self-assembled Ge dot on Si(1 0 0) by carbon-induced strain-engineering Applied Surface Science 216 (2003) 419 423 Precise control of size and density of self-assembled Ge dot on Si(1 0 0) by carbon-induced strain-engineering Y. Wakayama a,*, L.V. Sokolov b, N. Zakharov c,

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates solidi status physica pss c current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates M. Zervos1, C. Xenogianni1,2, G. Deligeorgis1, M. Androulidaki1,

More information

Quantum dot heterostructures: fabrication, properties, lasers Review

Quantum dot heterostructures: fabrication, properties, lasers Review SEMICONDUCTORS VOLUME 32, NUMBER 4 APRIL 1998 Quantum dot heterostructures: fabrication, properties, lasers Review N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin. P. S. Kop ev, and Zh. I. Alferov A. F.

More information

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy Stefan Heun CNR-INFM, Italy, Laboratorio Nazionale TASC, Trieste and NEST-SNS, Pisa Outline A brief introduction

More information

Kinetic Monte Carlo simulation of semiconductor quantum dot growth

Kinetic Monte Carlo simulation of semiconductor quantum dot growth Solid State Phenomena Online: 2007-03-15 ISSN: 1662-9779, Vols. 121-123, pp 1073-1076 doi:10.4028/www.scientific.net/ssp.121-123.1073 2007 Trans Tech Publications, Switzerland Kinetic Monte Carlo simulation

More information

Zero- or two-dimensional?

Zero- or two-dimensional? Stacked layers of submonolayer InAs in GaAs: Zero- or two-dimensional? S. Harrison*, M. Young, M. Hayne, P. D. Hodgson, R. J. Young A. Schliwa, A. Strittmatter, A. Lenz, H. Eisele, U. W. Pohl, D. Bimberg

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices Physica E 2 (1998) 325 329 Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices D.M. Follstaedt *, R.D. Twesten, J. Mirecki Millunchick, S.R. Lee, E.D. Jones, S.P.

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth

Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth Journal of Crystal Growth 272 (2004) 148 153 www.elsevier.com/locate/jcrysgro Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth V.C. Elarde, T.S. Yeoh, R. Rangarajan,

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

In situ electron-beam processing for III-V semiconductor nanostructure fabrication

In situ electron-beam processing for III-V semiconductor nanostructure fabrication In situ electron-beam processing for III-V semiconductor nanostructure fabrication Tomonori Ishikawa a), Shigeru Kohmoto, Tetsuya Nishimura*, and Kiyoshi Asakawa The Femtosecond Technology Research Association

More information

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cecile Saguy A. Raanan, E. Alagem and R. Brener Solid State Institute. Technion, Israel Institute of Technology, Haifa 32000.Israel

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature 3nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature by Hitoshi Shimizu *, Kouji Kumada *, Seiji Uchiyama * and Akihiko Kasukawa * Long wavelength- SQW lasers that include a

More information

Investigation of the formation of InAs QD's in a AlGaAs matrix

Investigation of the formation of InAs QD's in a AlGaAs matrix 10th Int. Symp. "Nanostructures: Physics and Technology" St Petersburg, Russia, June 17-21, 2002 2002 IOFFE Institute NT.16p Investigation of the formation of InAs QD's in a AlGaAs matrix D. S. Sizov,

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy

Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy Wipakorn Jevasuwan, Somchai Ratanathammapan, and Somsak Panyakeow Abstract Droplet epitaxy technique is a key fabrication method to create

More information

Surface compositional gradients of InAs/GaAs quantum dots

Surface compositional gradients of InAs/GaAs quantum dots Surface compositional gradients of InAs/GaAs quantum dots S. Heun, G. Biasiol, V. Grillo, E. Carlino, and L. Sorba Laboratorio Nazionale TASC INFM-CNR, I-34012 Trieste, Italy G. B. Golinelli University

More information

Photoluminescence characterization of quantum dot laser epitaxy

Photoluminescence characterization of quantum dot laser epitaxy Photoluminescence characterization of quantum dot laser epitaxy Y. Li *, Y. C. Xin, H. Su and L. F. Lester Center for High Technology Materials, University of New Mexico 1313 Goddard SE, Albuquerque, NM

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Effects of GaP Insertion Layer on the Properties of InP Nanostructures by Metal-Organic Vapor Phase Epitaxy

Effects of GaP Insertion Layer on the Properties of InP Nanostructures by Metal-Organic Vapor Phase Epitaxy Universities Research Journal 2011, Vol. 4, No. 4 Effects of GaP Insertion Layer on the Properties of InP Nanostructures by Metal-Organic Vapor Phase Epitaxy Soe Soe Han 1, Somsak Panyakeow 2, Somchai

More information

Morphological evolution of single-crystal ultrathin solid films

Morphological evolution of single-crystal ultrathin solid films Western Kentucky University From the SelectedWorks of Mikhail Khenner March 29, 2010 Morphological evolution of single-crystal ultrathin solid films Mikhail Khenner, Western Kentucky University Available

More information

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1 Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction

More information

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany 1. Introduction 2. Vibrational Spectroscopies (Raman and Infrared)

More information

Growth optimization of InGaAs quantum wires for infrared photodetector applications

Growth optimization of InGaAs quantum wires for infrared photodetector applications Growth optimization of InGaAs quantum wires for infrared photodetector applications Chiun-Lung Tsai, Chaofeng Xu, K. C. Hsieh, and K. Y. Cheng a Department of Electrical and Computer Engineering and Micro

More information

Spectromicroscopic investigations of semiconductor quantum dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Spectromicroscopic investigations of semiconductor quantum dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Spectromicroscopic investigations of semiconductor quantum dots Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Motivation Quantum Dot Applications based on their particular electronic properties

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Kentaro Sasaki, Keiji Ueno and Atsushi Koma Department of Chemistry, The University of Tokyo,

More information

Mapping Atomic Structure at Epitaxial Interfaces

Mapping Atomic Structure at Epitaxial Interfaces Mapping Atomic Structure at Epitaxial Interfaces Roy Clarke, University of Michigan, Ann Arbor, MI Opportunities for interface science at the ERL royc@umich.edu ERL X-ray Science Workshop: Almost Impossible

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs PUBLICATION V Journal of Crystal Growth 248 (2003) 339 342 Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs T. Hakkarainen*, J. Toivonen, M. Sopanen, H. Lipsanen Optoelectronics

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning probe microscope

Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning probe microscope Available online at www.sciencedirect.com Physica E 21 (2004) 414 418 www.elsevier.com/locate/physe Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning

More information

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy S. Heun, G. Mori, M. Lazzarino, D. Ercolani,* G. Biasiol, and L. Sorba* Laboratorio Nazionale TASC-INFM,

More information

Quantum Well and Quantum Dot Intermixing for Optoelectronic Device Integration

Quantum Well and Quantum Dot Intermixing for Optoelectronic Device Integration Quantum Well and Quantum Dot Intermixing for Optoelectronic Device Integration Chennupati Jagadish Australian National University Research School of Physical Sciences and Engineering, Canberra, ACT 0200

More information

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Abstract: By electrically segmenting, and series-connecting

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012763 TITLE: Absorption Coefficient of InGaAs V-shaped Quantum Wires Integrated in Optical Waveguides by MBE Growth DISTRIBUTION:

More information

Epitaxial Issues and Growth Morphologies of InAlAs/InGaAs MQWs and Heterostructures on (100) and non -(100) InP Substrates

Epitaxial Issues and Growth Morphologies of InAlAs/InGaAs MQWs and Heterostructures on (100) and non -(100) InP Substrates Epitaxial Issues and Growth Morphologies of InAlAs/InGaAs MQWs and Heterostructures on (100) and non -(100) InP Substrates by Aris Christou Materials Science and Engineering University of Maryland, College

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes - Introduction and Preparation - Characterisation - Applications Dietrich RT Zahn Semiconductor Physics,, TU Chemnitz http://www.tu-chemnitz.de/physik/hlph/

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Cross-sectional scanning tunneling microscopy investigations of InGaSb/GaAs/GaP(001) nanostructures. Master Thesis of Stavros Rybank

Cross-sectional scanning tunneling microscopy investigations of InGaSb/GaAs/GaP(001) nanostructures. Master Thesis of Stavros Rybank Cross-sectional scanning tunneling microscopy investigations of InGaSb/GaAs/GaP(001) nanostructures Master Thesis of Stavros Rybank submitted at the Royal Institute of Technology (KTH) experiments conducted

More information

Semiconductor Disk Laser on Microchannel Cooler

Semiconductor Disk Laser on Microchannel Cooler Semiconductor Disk Laser on Microchannel Cooler Eckart Gerster An optically pumped semiconductor disk laser with a double-band Bragg reflector mirror is presented. This mirror not only reflects the laser

More information

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures Superlattices and Microstructures, Vol 21, No 1, 1997 Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures M Inoue, T Sugihara, T Maemoto, S Sasa, H Dobashi, S Izumiya Department

More information

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Nucleation Today s topics Understanding the basics of epitaxial techniques used for surface growth of crystalline structures (films, or layers).

More information

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS A. Majid a,b, Samir Alzobaidi a and Thamer Alharbi a a Department of Physics, College of Science, Almajmaah University, P. O. Box no.1712, Al-Zulfi 11932,

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands.

Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands. 1 2 Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands. 3 The scale bar at the bottom represents 500 nm. 60, 90, 120 and 150, originated from the inter- 4 junctioning

More information

Reflection high energy electron diffraction and scanning tunneling microscopy study of InP(001) surface reconstructions

Reflection high energy electron diffraction and scanning tunneling microscopy study of InP(001) surface reconstructions Reflection high energy electron diffraction and scanning tunneling microscopy study of InP(001) surface reconstructions V.P. LaBella, Z. Ding, D.W. Bullock, C. Emery, and P.M. Thibado Department of Physics,

More information

Christian Ratsch, UCLA

Christian Ratsch, UCLA Strain Dependence of Microscopic Parameters and its Effects on Ordering during Epitaxial Growth Christian Ratsch, UCLA Institute for Pure and Applied Mathematics, and Department of Mathematics Collaborators:

More information

Digital stress compensation for stacked InAs/GaAs QDs solar cells

Digital stress compensation for stacked InAs/GaAs QDs solar cells Digital stress compensation for stacked InAs/GaAs QDs solar cells D. Alonso-Álvarez, A. G. Taboada, Y. González, J. M. Ripalda, B. Alén, L. González and F. Briones Instituto de Microelectrónica de Madrid

More information

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy Z. Z. Sun 1, S. F. Yoon 1,2, K. C. Yew 1, and B. X. Bo 1 1 School

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of metal, dielectric, ferroelectric, and polymer thin films. We seek to understand and describe nucleation and growth

More information

QUANTUM NANOSTRUCTURES

QUANTUM NANOSTRUCTURES QUANTUM NANOSTRUCTURES by Droplet Epitaxy Somsak Panyakeow Semiconductor Device Research Laboratory (SDRL), CoE Nanotechnology Center of Thailand, Department of Electrical Engineering, Faculty of Engineering,

More information

1 Semiconductor Quantum Dots for Ultrafast Optoelectronics

1 Semiconductor Quantum Dots for Ultrafast Optoelectronics j1 1 Semiconductor Quantum Dots for Ultrafast Optoelectronics 1.1 The Role of Dimensionality in Semiconductor Materials The history of semiconductor lasers has been punctuated by dramatic revolutions.

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

Surface Composition Mapping Of Semiconductor Quantum Dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Surface Composition Mapping Of Semiconductor Quantum Dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Surface Composition Mapping Of Semiconductor Quantum Dots Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Motivation Quantum Dot Applications based on their particular electronic properties (confinement)

More information

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Ling Xia 1, Vadim Tokranov 2, Serge R. Oktyabrsky

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Lecture 20 - Semiconductor Structures

Lecture 20 - Semiconductor Structures Lecture 0: Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure metal Layer Structure Physics 460 F 006 Lect 0 1 Outline What is a semiconductor Structure? Created

More information

of AlInP Quantum Wires for Polarized Micron-sized

of AlInP Quantum Wires for Polarized Micron-sized Three-dimensional Self-assembled Columnar Arrays of AlInP Quantum Wires for Polarized Micron-sized Amber Light Emitting Diodes Andrea Pescaglini, a Agnieszka Gocalinska, a, * Silviu Bogusevschi, a,b Stefano

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information