Bios 6648: Design & conduct of clinical research

Size: px
Start display at page:

Download "Bios 6648: Design & conduct of clinical research"

Transcription

1 Bis 6648: Design & cnduct f clinical research Sectin 3 - Essential principle 3.1 Masking (blinding) 3.2 Treatment allcatin (randmizatin) 3.3 Study quality cntrl : Interim decisin and grup sequential : fr trial mnitring (b) Overview f grup sequential (c) Example: sepsis trial Bis pg 1

2 fr trial mnitring Mtivatin: Many trials have been stpped early: Physician health study shwed that aspirin reduces the risk f cardivascular death. A phase III study f tamxifen fr preventin f breast cancer amng wmen at risk fr breast cancer shwed a reductin in breast cancer incidence. A phase III study f anti-arrhythmia drugs fr preventin f death in peple with cardiac arrhythmia stpped due t excess deaths with the anti-arrhythmia drugs. A phase III study f flic acid supplements fr preventin f neural tube defects. Wmen s Health Initiative: Hrmnes cause heart disease. Bis pg 2

3 fr trial mnitring What is trial mnitring? Mnitring fr quality cntrl; fr example, Patient accrual. Data quality/cmpleteness. Unanticipated adverse events. Mnitring study endpints(s); fr example, Treatment benefits. Txicity differences. Gd quality cntrl shuld be part f every study t ensure that the study achieves its gals. Mnitring study endpints is nt applicable in every study, and requires special statistical methds t avid increaed statistical errrs. Bis pg 3

4 fr trial mnitring Reasns t mnitr study endpints: T maintain the validity f the infrmed cnsent fr: Subjects currently enrlled in the study. New subjects entering the study. T ensure the ethics f randmizatin. Randmizatin is nly ethical under equipise. If there is nt equipise, then the trial shuld stp. T identify the best treatment as quickly as pssible: Fr the benefit f all patients (i.e., s that the best treatment becmes standard practice). Fr the benefit f study participants (i.e., s that participants are nt given inferir therapies fr any lnger than necessary). Bis pg 4

5 fr trial mnitring If nt dne prperly, mnitring f endpints can lead t biased results: Data driven analyses cause bias: Analyzing study results because they lk gd leads t an verestimate f treatment benefits. Publicatin r presentatin f preliminary results can affect: Ability t accrue subjects. Type f subjects that are referred and accrued. Treatment f patients nt in the study. Failure t design fr interim analyses can lead t hasty decisins. Decisins made in the heat f the mment are subject t: Inadequate cnsideratin f trade-ffs between cmpeting endpints (txicity versus benefit). External pressures frm study investigatrs r spnsrs. Lack f bjectivity by study mnitrs. Bis pg 5

6 fr trial mnitring Thus, Mnitring f study endpints is ften required fr ethical reasns. Mnitring f study endpints must carefully planned as part f study design t: Avid bias Assure careful decisins Maintain desired statistical prperties Bis pg 6

7 fr trial mnitring Key elements f mnitring Hw are trials mnitred? Investigatr knwledge f interim results can lead t biased results: Negative results may lead t lss f enthusias. Psitive interim results may lead t inapprpriate early publicatin. Either result may cause changes in the types f subjects wh are recruited int the trial. Data Safety and Mnitring Bards (DSMB)" are used t avid biased decisins: DSMB members are independent f the study investigatrs The DSMB reviews unblinded data in the midst f a trial t: Assure the trial is safe t cntinue. Make decisins abut early terminatin based n the statistical mnitring plan ( grup-sequential clinical trial design"). DSMB cmpsitin: Subject-matter specialists (2-4) Bistatistician (1-2). Bis pg 7

8 fr trial mnitring Key elements f mnitring The trial mnitring plan is typically pre-specified in tw dcuments: DSMB charter: Defines scpe f trial mnitring Defines DSMB respnsibilities Defines spnsr respnsibilities Pre-specifies mnitring plans and decisins (reasns fr stpping) Interim Statistical Analysis Plan (ISAP): Defines mnitring endpint(s) Pre-specifies analysis timing, decisin criteria, and ratinale Pre-specifies methds fr implementatin (changes t analysis timing) Pre-specifies adjustments t statistical inference abut treatment effects Bis pg 8

9 fr trial mnitring Key elements f mnitring Typical cntent fr DSMB charter: Trial synpsis; fr example: Summary f design Eligibility/exclusins Statistical design and sample size DSMB rganizatin Cmpsitin and selectin f members Respnsibilities f DSMB What will be mnitred (accrual, QC, safety, endpints?) Respnsibilities f spnsr Prviding pen/clsed reprts; data summaries Cmmittee meetings: Open sessin; clsed sessin; executive sessin Cmmunicatin Open reprt; clsed reprt t be prvided t DSMB Respnsibility fr meeting minutes (pen and clsed minutes) Prcess fr DSMB recmmendatins Bis pg 9

10 fr trial mnitring Key elements f mnitring Typical cntent fr ISAP: Safety mnitring plan (if there are frmal safety interim analyses) Decisin rules fr frmal safety analyses Evaluatin f decisin rules (pwer, expected sample size, stpping prbability) Methds fr mdifying rules (changes in timing f analyses) Methds fr inference (bias adjusted inference) Mnitring plan fr primary endpint(s) Decisin rules and reasns fr early terminatin (e.g., efficacy, futility, equivalence, harm) Evaluatin f decisin rules (pwer, expected sample size, stpping prbability) Methds fr mdifying rules (changes in timing f analyses) Methds fr inference (bias adjusted inference) Data handling and respnsibilities fr analysis Bis pg 10

11 (b) Overview f grup sequential Statistical framewrk fr trial mnitring Types f grup sequential Example (next lecture): sepsis trial Bis pg 11

12 b) Overview f grup sequential Statistical framewrk fr trial mnitring: Statistical design f the fixed-sample trial The interim statistical analysis plan is based n the fixed sample design Primary endpint Prbability mdel Functinal Cntrast Statistical hyptheses Statistical standards fr decisins (interval estimate) Bis pg 12

13 b) Overview f grup sequential Statistical framewrk fr trial mnitring: Statistical design f the fixed-sample trial The statistical decisin criteria are referenced t the trial s design hyptheses. Fr example: One-sided superirity test (assume small θ favrs new treatment): Null: θ θ Alternative: θ θ + with θ + < θ, and θ + is chsen t represent the smallest difference that is clinically imprtant. Tw-sided (equivalence) test: Null: Lwer Alternative: θ = θ θ θ Upper Alternative: θ θ + with θ < θ < θ +. θ and θ + dente the smallest imprtant differences. Bis pg 13

14 b) Overview f grup sequential Statistical framewrk fr trial mnitring: Selecting decisin criteria A decisin t stp needs t cnsider what has r has nt been ruled ut. Fr example One-sided superirity test (assume small θ favrs new treatment): Stp fr superirity when any harm (θ θ ) has been ruled ut. Stp fr futility when imprtant benefits (θ θ + ) have been ruled ut. Tw-sided (equivalence) test: Stp fr treatment A better than treatment B when inferirity f A (θ θ ) has been ruled ut. Stp fr treatment B better than treatment A when inferirity f B (θ θ ) has been ruled ut. Stp fr equivalence when imprtant differences (either θ θ + r θ θ ) have been ruled ut. The hyptheses that have been ruled in/ut are given by the interval estimate. Bis pg 14

15 b) Overview f grup sequential Statistical framewrk fr trial mnitring: Grup sequential (superirity trial) Suppse that the trial is planned fr j = 1,..., J interim analyses. Let ˆθ j dente the estimated treatment effect at the jth analysis. Cnsider stpping criteria a j < d j with: ˆθ j a j Decide new treatment is superir ˆθ j d j Decide new treatment is nt superir a j < ˆθ j < d j Cntinue trial Set a J = d J s that the trial stps by the Jth analysis. Hw shuld we chse these critical values? Bis pg 15

16 b) Overview f grup sequential Statistical framewrk fr trial mnitring: Grup sequential (superirity trial) Depictin f the abve decisin rules: O'Brien Fleming 1 sided symmetric stpping rules Mean treatment effect Prprtin f ttal sample size Bis pg 16

17 Interim analyses require special methds Sampling density fr sequentially-mnitred test statistic The filtering due t interim analyses creates nn-standard sampling densities as the basis fr inference. Sampling density depends n the stpping rule. (Illustratin using simulated sample paths) Bis pg 17

18 Interim analyses require special methds Sampling density fr sequentially-mnitred test statistic The filtering due t interim analyses creates nn-standard sampling densities as the basis fr inference. Sampling density depends n the stpping rule. OBF (theta = 1.96) Prbability Density X Bis pg 18

19 Sampling density fr sequentially sampled test statistic Let C j dente the cntinuatin set at the jth interim analysis. Let (M, S) dente the bivariate statistic where M dentes the stpping time (1 M J) and S = S M dentes the value f the partial sum statistic at the stpping time. The sampling density fr the bservatin (M = m, S = s) is: { f (m, s; θ) s C m p(m, s; θ) = 0 else where the (sub)density functin f (j, s; θ) is recursively defined as f (1, s; θ) = f (j, s; θ) = ( ) 1 s n1 V φ n1 θ n1 V ( nj V φ s u n j θ nj V C (j 1) 1 j = 2,..., m ) f (j 1, u; θ) du, Bis pg 19

20 Example: O Brien-Fleming (OBF) 2-sided design bf Fixed 5 mean respnse Sample Size Bis pg 20

21 Sampling density fr OBF bundaries with θ = 0 and θ = 3.92 (crrespnding Nrmal sampling density fr cmparisn): Prbability Density Standard Nrmal (theta = 0) Prbability Density Standard Nrmal (theta = 3.92) X X O'Brien-Fleming (theta = 0) O'Brien-Fleming (theta = 3.92) Prbability Density Prbability Density X X Bis pg 21

22 Example: OBF versus Pcck 1-sided bf pc 8 6 mean respnse Sample Size Bis pg 22

23 Sampling density fr OBF and Pcck 1-sided. OBF (theta = 0) OBF (theta = 1.96) Prbability Density Prbability Density X X Pcck (theta = 0) Pcck (theta = 1.96) Prbability Density Prbability Density X X Bis pg 23

24 Interim analyses require special methds Characteristics f the grup sequential sampling density Density is nt shift invariant Jump discntinuities Requires numerical integratin Sequential testing intrduces bias: E(ˆθ) θ OBF Pcck Bis pg 24

25 Interim analyses require special methds S hw shuld we chse the critical values? Maintain statistical design criteria f the fixed sample trial: Type I errr rate f α = (ne-sided test) r α = 0.05 (tw-sided test). Maintain maximal sample size (with ptential lss f pwer) Maintain pwer (with larger maximal sample size) Other cnsideratins when selecting critical values: Number f interim analyses Timing f interim analyses Degree f early cnservatism Characteristics f the sample size distributin: Expected sample size (Average Sample Number; ASN) Quantiles f the sample size distributin Maximal sample size Stpping prbabilities at each f the interim analyses Bis pg 25

26 Interim analyses require special methds There are many types f grup sequential Fur design categries: One-sided test; One-sided stpping (allw stpping fr efficacy r futility, but nt bth) One-sided test; Tw-sided stpping (allw stpping fr either efficacy r futility) Tw-sided test; One-sided stpping (allw stpping nly fr the alternative(s)) Tw-sided test; Tw-sided stpping (allw stpping fr either the null r the alternative) I will illustrate hw t chse an apprpriate design (sepsis example and yur prjects) Bis pg 26

27 Fur general design categries 1-sided test; stp fr futility 1-sided test; stp fr futility r efficacy Mean Effect Mean Effect Sample Size 2-sided test; stp fr alternative(s) Sample Size 2-sided test; stp fr null r alternative(s) Mean Effect Mean Effect Sample Size Sample Size Bis pg 27

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

4. Issues in Trial Monitoring

4. Issues in Trial Monitoring 4. Issues in Trial Monitoring 4.1 Elements of Trial Monitoring Monitoring trial process and quality Infrastructure requirements and DSMBs 4.2 Interim analyses: group sequential trial design 4.3 Group sequential

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Issues in Group Sequential/Adaptive Designs

Issues in Group Sequential/Adaptive Designs University f Pennsylvania SchlarlyCmmns Publicly Accessible Penn Dissertatins 1-1-2013 Issues in Grup Sequential/Adaptive Designs Hng Wan University f Pennsylvania, wanhng76@yah.cm Fllw this and additinal

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Statistics Statistical method Variables Value Score Type of Research Level of Measurement...

Statistics Statistical method Variables Value Score Type of Research Level of Measurement... Lecture 1 Displaying data... 12 Statistics... 13 Statistical methd... 13 Variables... 13 Value... 15 Scre... 15 Type f Research... 15 Level f Measurement... 15 Numeric/Quantitative variables... 15 Ordinal/Rank-rder

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment Science 10: The Great Geyser Experiment A cntrlled experiment Yu will prduce a GEYSER by drpping Ments int a bttle f diet pp Sme questins t think abut are: What are yu ging t test? What are yu ging t measure?

More information

Document for ENES5 meeting

Document for ENES5 meeting HARMONISATION OF EXPOSURE SCENARIO SHORT TITLES Dcument fr ENES5 meeting Paper jintly prepared by ECHA Cefic DUCC ESCOM ES Shrt Titles Grup 13 Nvember 2013 OBJECTIVES FOR ENES5 The bjective f this dcument

More information

Large Sample Hypothesis Tests for a Population Proportion

Large Sample Hypothesis Tests for a Population Proportion Ntes-10.3a Large Sample Hypthesis Tests fr a Ppulatin Prprtin ***Cin Tss*** 1. A friend f yurs claims that when he tsses a cin he can cntrl the utcme. Yu are skeptical and want him t prve it. He tsses

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research).

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research). Science Fair Prject Set Up Instructins 1) Hypthesis Statement 2) Materials List 3) Prcedures 4) Safety Instructins 5) Data Table 1) Hw t write a HYPOTHESIS STATEMENT Use the fllwing frmat: If (IV) is (increased,

More information

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 1 y = 2.5 y = 0.5x 3 2 1 1 2 3 1

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology Technical Bulletin Generatin Intercnnectin Prcedures Revisins t Cluster 4, Phase 1 Study Methdlgy Release Date: Octber 20, 2011 (Finalizatin f the Draft Technical Bulletin released n September 19, 2011)

More information

Public Key Cryptography. Tim van der Horst & Kent Seamons

Public Key Cryptography. Tim van der Horst & Kent Seamons Public Key Cryptgraphy Tim van der Hrst & Kent Seamns Last Updated: Oct 5, 2017 Asymmetric Encryptin Why Public Key Crypt is Cl Has a linear slutin t the key distributin prblem Symmetric crypt has an expnential

More information

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through f Getting Invlved O Literature Circles can be fun. It is exciting t be part f a grup that shares smething. S get invlved, read, think, and talk abut bks! Respnsibilities f a Member Remember a Literature

More information

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents WRITING THE REPORT Organizing the reprt Mst reprts shuld be rganized in the fllwing manner. Smetime there is a valid reasn t include extra chapters in within the bdy f the reprt. 1. Title page 2. Executive

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

We respond to each of ORR s specific consultation questions in Annex A to this letter.

We respond to each of ORR s specific consultation questions in Annex A to this letter. Je Quill Office f Rail Regulatin One Kemble Street Lndn, WC2B 4AN Hannah Devesn Regulatry Refrm Specialist Netwrk Rail Kings Place, 90 Yrk Way Lndn, N1 9AG Email:hannah.devesn@netwrkrail.c.uk Telephne:

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Standard Title: Frequency Response and Frequency Bias Setting. Andrew Dressel Holly Hawkins Maureen Long Scott Miller

Standard Title: Frequency Response and Frequency Bias Setting. Andrew Dressel Holly Hawkins Maureen Long Scott Miller Template fr Quality Review f NERC Reliability Standard BAL-003-1 Frequency Respnse and Frequency Bias Setting Basic Infrmatin: Prject number: 2007-12 Standard number: BAL-003-1 Prject title: Frequency

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

REGRESSION DISCONTINUITY (RD) Technical Track Session V. Dhushyanth Raju Julieta Trias The World Bank

REGRESSION DISCONTINUITY (RD) Technical Track Session V. Dhushyanth Raju Julieta Trias The World Bank REGRESSION DISCONTINUITY (RD) Technical Track Sessin V Dhushyanth Raju Julieta Trias The Wrld Bank These slides cnstitute supprting material t the Impact Evaluatin in Practice Handbk : Gertler, P. J.;

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

THE LIFE OF AN OBJECT IT SYSTEMS

THE LIFE OF AN OBJECT IT SYSTEMS THE LIFE OF AN OBJECT IT SYSTEMS Persns, bjects, r cncepts frm the real wrld, which we mdel as bjects in the IT system, have "lives". Actually, they have tw lives; the riginal in the real wrld has a life,

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1 Administrativia Assignment 1 due thursday 9/23/2004 BEFORE midnight Midterm eam 10/07/2003 in class CS 460, Sessins 8-9 1 Last time: search strategies Uninfrmed: Use nly infrmatin available in the prblem

More information

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University Cmprehensive Exam Guidelines Department f Chemical and Bimlecular Engineering, Ohi University Purpse In the Cmprehensive Exam, the student prepares an ral and a written research prpsal. The Cmprehensive

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Optimization Programming Problems For Control And Management Of Bacterial Disease With Two Stage Growth/Spread Among Plants

Optimization Programming Problems For Control And Management Of Bacterial Disease With Two Stage Growth/Spread Among Plants Internatinal Jurnal f Engineering Science Inventin ISSN (Online): 9 67, ISSN (Print): 9 676 www.ijesi.rg Vlume 5 Issue 8 ugust 06 PP.0-07 Optimizatin Prgramming Prblems Fr Cntrl nd Management Of Bacterial

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

Fabrication Thermal Test. Methodology for a Safe Cask Thermal Performance

Fabrication Thermal Test. Methodology for a Safe Cask Thermal Performance ENSA (Grup SEPI) Fabricatin Thermal Test. Methdlgy fr a Safe Cask Thermal Perfrmance IAEA Internatinal Cnference n the Management f Spent Fuel frm Nuclear Pwer Reactrs An Integrated Apprach t the Back-End

More information

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science Weathering Title: Chemical and Mechanical Weathering Grade Level: 9-12 Subject/Cntent: Earth and Space Science Summary f Lessn: Students will test hw chemical and mechanical weathering can affect a rck

More information

Evaluation of Temperature Monitoring System of Cold Chain at all Urban Health Centres (UHCs) of Ahmedabad Municipal Corporation (AMC) area.

Evaluation of Temperature Monitoring System of Cold Chain at all Urban Health Centres (UHCs) of Ahmedabad Municipal Corporation (AMC) area. Original Article Healthline Jurnal Vlume 6 Issue 1 (January - June 2015) Evaluatin f Mnitring System f Cld Chain at all Urban Health Centres (UHCs) f Ahmedabad Municipal Crpratin (AMC) area. 1 2 Kapil

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

Verification of NIMs Baseline Data Reports and Methodology Reports

Verification of NIMs Baseline Data Reports and Methodology Reports hzkwekdd/^^/ke /ZdKZd 'EZ> >/Ddd/KE / D ' d h d^ dddd Verificatin f NIMs Baseline Data Reprts and Methdlgy Reprts & dd dddd d d /EdZKhd/KE d > Z d / d K d d ZK'E/d/KEK&sZ/&/Z^ d d e d d,sz/&/d/kewzk^^

More information

Inflow Control on Expressway Considering Traffic Equilibria

Inflow Control on Expressway Considering Traffic Equilibria Memirs f the Schl f Engineering, Okayama University Vl. 20, N.2, February 1986 Inflw Cntrl n Expressway Cnsidering Traffic Equilibria Hirshi INOUYE* (Received February 14, 1986) SYNOPSIS When expressway

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

Engineering Decision Methods

Engineering Decision Methods GSOE9210 vicj@cse.unsw.edu.au www.cse.unsw.edu.au/~gs9210 Maximin and minimax regret 1 2 Indifference; equal preference 3 Graphing decisin prblems 4 Dminance The Maximin principle Maximin and minimax Regret

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement number

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement number This prject has received funding frm the Eurpean Unin s Hrizn 2020 research and innvatin prgramme under grant agreement number 727524. Credit t & http://www.h3uni.rg/ https://ec.eurpa.eu/jrc/en/publicatin/eur-scientific-andtechnical-research-reprts/behaviural-insights-appliedplicy-eurpean-reprt-2016

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

Subject description processes

Subject description processes Subject representatin 6.1.2. Subject descriptin prcesses Overview Fur majr prcesses r areas f practice fr representing subjects are classificatin, subject catalging, indexing, and abstracting. The prcesses

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

ELE Final Exam - Dec. 2018

ELE Final Exam - Dec. 2018 ELE 509 Final Exam Dec 2018 1 Cnsider tw Gaussian randm sequences X[n] and Y[n] Assume that they are independent f each ther with means and autcvariances μ ' 3 μ * 4 C ' [m] 1 2 1 3 and C * [m] 3 1 10

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Chapter 13: The Correlation Coefficient and the Regression Line. We begin with a some useful facts about straight lines.

Chapter 13: The Correlation Coefficient and the Regression Line. We begin with a some useful facts about straight lines. Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 y = 2.5 1 y = 0.5x 3 2 1 1 2 3 1

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION NUROP Chinese Pinyin T Chinese Character Cnversin NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION CHIA LI SHI 1 AND LUA KIM TENG 2 Schl f Cmputing, Natinal University f Singapre 3 Science

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

5.4 Measurement Sampling Rates for Daily Maximum and Minimum Temperatures

5.4 Measurement Sampling Rates for Daily Maximum and Minimum Temperatures 5.4 Measurement Sampling Rates fr Daily Maximum and Minimum Temperatures 1 1 2 X. Lin, K. G. Hubbard, and C. B. Baker University f Nebraska, Lincln, Nebraska 2 Natinal Climatic Data Center 1 1. INTRODUCTION

More information

UNIV1"'RSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C. CUMULATIVE SUM CONTROL CHARTS FOR THE FOLDED NORMAL DISTRIBUTION

UNIV1'RSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C. CUMULATIVE SUM CONTROL CHARTS FOR THE FOLDED NORMAL DISTRIBUTION UNIV1"'RSITY OF NORTH CAROLINA Department f Statistics Chapel Hill, N. C. CUMULATIVE SUM CONTROL CHARTS FOR THE FOLDED NORMAL DISTRIBUTION by N. L. Jlmsn December 1962 Grant N. AFOSR -62..148 Methds f

More information

ANALOGY ESSAY PRE-WRITING

ANALOGY ESSAY PRE-WRITING ANALOGY ESSAY PRE-WRITING THE PROCESS PROCESS: 1. First, chse a subject that cncerns yu: Sme issue in yur career field, frm persnal experience, r f natinal cncern plitics, war, ecnmy, histry, educatin

More information

BOUNDED UNCERTAINTY AND CLIMATE CHANGE ECONOMICS. Christopher Costello, Andrew Solow, Michael Neubert, and Stephen Polasky

BOUNDED UNCERTAINTY AND CLIMATE CHANGE ECONOMICS. Christopher Costello, Andrew Solow, Michael Neubert, and Stephen Polasky BOUNDED UNCERTAINTY AND CLIMATE CHANGE ECONOMICS Christpher Cstell, Andrew Slw, Michael Neubert, and Stephen Plasky Intrductin The central questin in the ecnmic analysis f climate change plicy cncerns

More information

download instant at

download instant at dwnlad instant at wwweasysemestercm Part A: Overview and Suggestins Statistics in the Cntext f Scientific Research This chapter pens with an verview f scientific research The gal is t cnvey the pint that

More information

1b) =.215 1c).080/.215 =.372

1b) =.215 1c).080/.215 =.372 Practice Exam 1 - Answers 1. / \.1/ \.9 (D+) (D-) / \ / \.8 / \.2.15/ \.85 (T+) (T-) (T+) (T-).080.020.135.765 1b).080 +.135 =.215 1c).080/.215 =.372 2. The data shwn in the scatter plt is the distance

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information