4. Issues in Trial Monitoring

Size: px
Start display at page:

Download "4. Issues in Trial Monitoring"

Transcription

1 4. Issues in Trial Monitoring 4.1 Elements of Trial Monitoring Monitoring trial process and quality Infrastructure requirements and DSMBs 4.2 Interim analyses: group sequential trial design 4.3 Group sequential design families 4.4 Frequentist evaluation of sequential trials 4.5 On the use of stochastic curtailment What is stochastic curtailment? (a) Stopping decisions based on conditional power (b) Stopping decisions based on predictive power Example: sepsis trial 4.6 Implementing a monitoring plan 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 1

2 4.5 On the use of stochastic curtailment: What is it? Consider the sepsis trial: Suppose you observe a 5% higher mortality rate with antibody treatment at the first interim analysis (ˆθ = 0.05). You are considering stopping for lack of effect. It might seem relevant to ask: if I were to continue, would I change my mind? More formally, what is the probability of reversing the current decision: P θ (ˆθ J < d J ˆθ 1 = 0.05)? This is a form of power. If it is small, then you should stop. The probability of changing your mind based on the data is known as stochastic curtailment. There are two types of approaches: (a) Conditional power: Power based on some relevant value for θ. (b) Predictive power: Mean power integrated over a posterior distribution for θ Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

3 4.5(a) Conditional power (Example): Recall the sepsis trial: According to the monitoring plan, the trial would stop for benefit if ˆθ J < d J = at N J = 1700 patients. If ˆθ 1 = 0.05, then what is the chance (power) that ˆθ J < d J? If we observe ˆθj = x, then the increment between the jth and Jth analysis is normally distributed: N J ˆθJ N j x N [(N J N j )θ, (N J N j )V ] where V = = Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 3

4 4.5(a) Conditional power (Example): It follows that: P θ (ˆθ J < d J ˆθ j = x) < α N J d J N jx (N J N j )θ) < z α (NJ N j )V ] x > N 1 j [N J d J (N J N j )θ z α NJ N j That is, we would be very unlikely (probability less than α) to reverse a futility decision if ˆθ j > d j where: ] d j = N 1 j [N J d J (N J N j )θ z α NJ N j 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 4

5 4.5(a) Conditional power (Example): Suppose in the sepsis trial we used the following stopping criteria: Final critical value is d J = Decide futility as long as the power for changing our mind is smaller than 10% (z α = 1.28). Calculate this power under θ = 2 d J = The following futility stopping criteria result from the above calculations: d 1 = d 2 = d 3 = d 4 = Notice the degree conservatism. Is it ethical? 5 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

6 4.5(a) Conditional power (Example): Suppose we instead use zα = 0; i.e., a 50% chance of changing our mind. Then: d 1 = d 2 = d 3 = d 4 = Notice the degree conservatism. Is it ethical? Do these stopping rules look familiar? Is it reasonable to use z α = 0? 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 6

7 4.5(a) Conditional power (design family): It is instructive to construct a conditional futility design family in the standardized scale: V/NJ Standardized mean: δ = θ θ 0 Standardized statistic: ˆδj N (δ, 1 Decision criteria: Π j ) δ j > d j Decide for superiority δ j < a j Decide for lack of superiority Let d J = a J = G. 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 7

8 4.5(a) Conditional power (design family): Conditional power decision rules: Stop for efficacy if P δ=0 (ˆδ J < G δ j = d j ) = α, which implies d j = (G + z 1 α 1 Πj )Π 1 j Stop for futility if P δ=δ+ (ˆδ J > G δ j = a j ) = α, which implies: a j = 2G (G + z 1 α 1 Πj )Π 1 j As in other families, G can be selected to control operating characteristics (see R-code in file lctsec4-5.r). 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 8

9 4.5(a) Conditional power (design family): Example: Suppose Π j = 0.25, 0.5, 0.75, 1.0. The values of G satisfying: are: J P (ˆδ j > d j δ = 0) = (type I error) j=1 J P (ˆδ j < a j δ = 2G) = (type II error) j=1 Values of d j for selected α Π j α = 0.10 α = 0.35 α = Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

10 4.5(a) Conditional power (design family): Stopping boundaries: CF.10 CF.35 CF.50 Difference in Means Sample size Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

11 4.5(a) Conditional power (design family): Sample Size: Average Sample Size 75th percentile Sample Size CF.10 CF.35 CF.50 Sample Size CF.10 CF.35 CF Difference in Means Difference in Means 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 11

12 4.5(a) Conditional power (design family): Power: CF.10 CF.35 CF.50 Power (Upper) Theta Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

13 4.5(a) Conditional power (Sepsis example) Comparing inference at lower (efficacy) boundary: Design: DSMB2 Bias-adjusted inference IA (N) a j ˆδj 95% CI p-value 1 (N = 425) (-0.228, ) (N = 850) (-0.132, ) (N = 1275) (-0.097, ) (N = 1700) (-0.086, ) Design: Conditional Futility (α = 0.1): Bias-adjusted inference IA (N) a j ˆδj 95% CI p-value 1 (N = 425) (-0.319, ) (N = 850) (-0.168, ) (N = 1275) (-0.114, ) (N = 1700) (-0.085, ) Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

14 4.5(a) Conditional power (Sepsis example) Comparing inference at upper (futility) boundary: Design: DSMB2 Bias-adjusted inference IA (N) d j ˆδj 95% CI p-value 1 (N = 425) ( 0.003, 0.141) (N = 850) (-0.060, 0.044) (N = 1275) (-0.079, 0.010) (N = 1700) (-0.086, ) Design: Conditional Futility (α = 0.1): Bias-adjusted inference IA (N) d j ˆδj 95% CI p-value 1 (N = 425) ( 0.096, 0.234) (N = 850) (-0.022, 0.083) (N = 1275) (-0.060, 0.028) (N = 1700) (-0.085, ) Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18

15 4.5(a) Conditional power (Summary) When compared with an O Brien-Fleming design, the conditional power family has the following characteristics: Nearly identical power Much lower stopping probability at early interim analyses Much larger ASN (loss of efficiency) Extreme conservatism in making any early decision Resulting questions: Is it ethical to continue in the presence of overwhelming evidence of harm (or benefit)? Does conditional power obfuscate the essential clinical/scientific issues in deciding whether to terminate a trial? 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 15

16 4.5(a) Conditional power (Summary) Note: There are fixes for the problems with conditional power: Calculate conditional power under a different value of δ; e.g.,: Calculate P δ=δ+ /2(ˆδ J < G ˆδ j = d j) instead of P δ=0 (ˆδ J < G ˆδ j = d j). Calculate P δ=δ+ /2(ˆδ J > G ˆδ j = a j) instead of P δ=δ+ (ˆδ J > G ˆδ j = a j). Calculate conditional power under the MLE ˆδj : Calculate P δ=ˆδj (ˆδ J < G ˆδ j = d j) instead of P δ=0 (ˆδ J < G ˆδ j = d j). Calculate P δ=ˆδj (ˆδ J > G ˆδ j = a j) instead of P δ=δ+ (ˆδ J > G ˆδ j = a j). (Consider predictive power.) 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 16

17 4.5(b) Predictive power Conditional power relied on a specific choice for δ: Efficacy: Pδ=0 (ˆδ J < G ˆδ j = d j ). Futility: P δ=δ+ (ˆδ J > G ˆδ j = a j ). Predictive power integrates over a posterior distribution for δ: Let λ0 (δ) denote a prior distribution for δ Let λ(δ ˆδ j ) denote the posterior distribution of δ at the jth interim analysis. Predictive probability: P (ˆδ J > G ˆδ j ) = P δ=u (ˆδ J > G ˆδ j )λ(u ˆδ j )du u Decision criteria can be defined based on the magnitude of the predictive probability. 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 17

18 4.5 Concluding remarks There are foundational issues with both conditional and predictive power. Neither frequentist nor Bayesian foundations construct inference around the probability of changing our mind (see paper). Underlying principles illustrated with this discussion of stochastic curtailment: All designs can be expressed as conditions on the observed estimate. Always consider statistical inference on the boundary when evaluating stopping criteria. 4. Trial Monitoring 4.5 Stochastic Curtailment 3 April / 18 18

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & Informatics Colorado School of Public Health University of Colorado Denver

More information

Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs

Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs Presented August 8-10, 2012 Daniel L. Gillen Department of Statistics University of California, Irvine

More information

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping : Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj InSPiRe Conference on Methodology

More information

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 8 P-values When reporting results, we usually report p-values in place of reporting whether or

More information

Group Sequential Designs: Theory, Computation and Optimisation

Group Sequential Designs: Theory, Computation and Optimisation Group Sequential Designs: Theory, Computation and Optimisation Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 8th International Conference

More information

Bios 6648: Design & conduct of clinical research

Bios 6648: Design & conduct of clinical research Bis 6648: Design & cnduct f clinical research Sectin 3 - Essential principle 3.1 Masking (blinding) 3.2 Treatment allcatin (randmizatin) 3.3 Study quality cntrl : Interim decisin and grup sequential :

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 7 Course Summary To this point, we have discussed group sequential testing focusing on Maintaining

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 10 Class Summary Last time... We began our discussion of adaptive clinical trials Specifically,

More information

An Adaptive Futility Monitoring Method with Time-Varying Conditional Power Boundary

An Adaptive Futility Monitoring Method with Time-Varying Conditional Power Boundary An Adaptive Futility Monitoring Method with Time-Varying Conditional Power Boundary Ying Zhang and William R. Clarke Department of Biostatistics, University of Iowa 200 Hawkins Dr. C-22 GH, Iowa City,

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & Informatics Colorado School of Public Health University of Colorado Denver

More information

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials Testing a secondary endpoint after a group sequential test Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 9th Annual Adaptive Designs in

More information

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints The Design of Group Sequential Clinical Trials that Test Multiple Endpoints Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Bruce Turnbull

More information

Estimation in Flexible Adaptive Designs

Estimation in Flexible Adaptive Designs Estimation in Flexible Adaptive Designs Werner Brannath Section of Medical Statistics Core Unit for Medical Statistics and Informatics Medical University of Vienna BBS and EFSPI Scientific Seminar on Adaptive

More information

Statistical Aspects of Futility Analyses. Kevin J Carroll. nd 2013

Statistical Aspects of Futility Analyses. Kevin J Carroll. nd 2013 Statistical Aspects of Futility Analyses Kevin J Carroll March Spring 222013 nd 2013 1 Contents Introduction The Problem in Statistical Terms Defining Futility Three Common Futility Rules The Maths An

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & nformatics Colorado School of Public Health University of Colorado Denver

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Overrunning in Clinical Trials: a Methodological Review

Overrunning in Clinical Trials: a Methodological Review Overrunning in Clinical Trials: a Methodological Review Dario Gregori Unit of Biostatistics, Epidemiology and Public Health Department of Cardiac, Thoracic and Vascular Sciences dario.gregori@unipd.it

More information

Two-Phase, Three-Stage Adaptive Designs in Clinical Trials

Two-Phase, Three-Stage Adaptive Designs in Clinical Trials Japanese Journal of Biometrics Vol. 35, No. 2, 69 93 (2014) Preliminary Report Two-Phase, Three-Stage Adaptive Designs in Clinical Trials Hiroyuki Uesaka 1, Toshihiko Morikawa 2 and Akiko Kada 3 1 The

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS Journal of Biopharmaceutical Statistics, 18: 1184 1196, 2008 Copyright Taylor & Francis Group, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400802369053 SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE

More information

Group Sequential Tests for Delayed Responses

Group Sequential Tests for Delayed Responses Group Sequential Tests for Delayed Responses Lisa Hampson Department of Mathematics and Statistics, Lancaster University, UK Chris Jennison Department of Mathematical Sciences, University of Bath, UK Read

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim

Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim Frank Bretz Statistical Methodology, Novartis Joint work with Martin Posch (Medical University

More information

CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity

CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity Prof. Kevin E. Thorpe Dept. of Public Health Sciences University of Toronto Objectives 1. Be able to distinguish among the various

More information

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs Christopher Jennison Department of Mathematical Sciences, University of Bath http://people.bath.ac.uk/mascj

More information

Chapter 8 - Statistical intervals for a single sample

Chapter 8 - Statistical intervals for a single sample Chapter 8 - Statistical intervals for a single sample 8-1 Introduction In statistics, no quantity estimated from data is known for certain. All estimated quantities have probability distributions of their

More information

Optimal group sequential designs for simultaneous testing of superiority and non-inferiority

Optimal group sequential designs for simultaneous testing of superiority and non-inferiority Optimal group sequential designs for simultaneous testing of superiority and non-inferiority Fredrik Öhrn AstraZeneca R & D Mölndal, SE-431 83 Mölndal, Sweden and Christopher Jennison Department of Mathematical

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust Discrete Sequential Boundaries for Clinical Trials Author(s): K. K. Gordon Lan and David L. DeMets Reviewed work(s): Source: Biometrika, Vol. 70, No. 3 (Dec., 1983), pp. 659-663 Published

More information

c Copyright 2014 Navneet R. Hakhu

c Copyright 2014 Navneet R. Hakhu c Copyright 04 Navneet R. Hakhu Unconditional Exact Tests for Binomial Proportions in the Group Sequential Setting Navneet R. Hakhu A thesis submitted in partial fulfillment of the requirements for the

More information

Statistical considerations for a trial of Ebola virus disease therapeutics

Statistical considerations for a trial of Ebola virus disease therapeutics Design Statistical considerations for a trial of Ebola virus disease therapeutics CLINICAL TRIALS Clinical Trials 216, Vol. 13(1) 39 48 Ó The Author(s) 216 Reprints and permissions: sagepub.co.u/journalspermissions.nav

More information

Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children

Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children Lisa Hampson, Franz Koenig and Martin Posch Department of Mathematics

More information

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design Comparing Adaptive Designs and the Classical Group Sequential Approach to Clinical Trial Design Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Multiple Testing in Group Sequential Clinical Trials

Multiple Testing in Group Sequential Clinical Trials Multiple Testing in Group Sequential Clinical Trials Tian Zhao Supervisor: Michael Baron Department of Mathematical Sciences University of Texas at Dallas txz122@utdallas.edu 7/2/213 1 Sequential statistics

More information

Calculation of Efficacy and Futiltiy Boundaries using GrpSeqBnds (Version 2.3)

Calculation of Efficacy and Futiltiy Boundaries using GrpSeqBnds (Version 2.3) Calculation of Efficacy and Futiltiy Boundaries using GrpSeqBnds (Version 2.3) Grant Izmirlian March 26, 2018 1 Introduction The function GrpSeqBnds computes efficacy and futility boundaries given the

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 12 Review So far... We have discussed the role of phase III clinical trials in drug development

More information

Quantitative Understanding in Biology 1.7 Bayesian Methods

Quantitative Understanding in Biology 1.7 Bayesian Methods Quantitative Understanding in Biology 1.7 Bayesian Methods Jason Banfelder October 25th, 2018 1 Introduction So far, most of the methods we ve looked at fall under the heading of classical, or frequentist

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem

Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem Lei Yang, Ph.D. Statistical Scientist, Roche (China) Holding Ltd. Aug 30 th 2018, Shanghai Jiao Tong

More information

The SEQDESIGN Procedure

The SEQDESIGN Procedure SAS/STAT 9.2 User s Guide, Second Edition The SEQDESIGN Procedure (Book Excerpt) This document is an individual chapter from the SAS/STAT 9.2 User s Guide, Second Edition. The correct bibliographic citation

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

Constrained Boundary Monitoring for Group Sequential Clinical Trials

Constrained Boundary Monitoring for Group Sequential Clinical Trials UW Biostatistics Working Paper Series 4-25-2003 Constrained Boundary Monitoring for Group Sequential Clinical Trials Bart E. Burington University of Washington Scott S. Emerson University of Washington,

More information

Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error

Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error by Diane Potvin Outline 1. Therapeutic Equivalence Designs 2. Objectives

More information

Group-Sequential Tests for One Proportion in a Fleming Design

Group-Sequential Tests for One Proportion in a Fleming Design Chapter 126 Group-Sequential Tests for One Proportion in a Fleming Design Introduction This procedure computes power and sample size for the single-arm group-sequential (multiple-stage) designs of Fleming

More information

Likelihood and Fairness in Multidimensional Item Response Theory

Likelihood and Fairness in Multidimensional Item Response Theory Likelihood and Fairness in Multidimensional Item Response Theory or What I Thought About On My Holidays Giles Hooker and Matthew Finkelman Cornell University, February 27, 2008 Item Response Theory Educational

More information

Adaptive designs beyond p-value combination methods. Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013

Adaptive designs beyond p-value combination methods. Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013 Adaptive designs beyond p-value combination methods Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013 Outline Introduction Combination-p-value method and conditional error function

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Hybrid Bayesian-frequentist approaches for small sample trial design: examples and discussion on concepts.

Hybrid Bayesian-frequentist approaches for small sample trial design: examples and discussion on concepts. Hybrid Bayesian-frequentist approaches for small sample trial design: examples and discussion on concepts. Stavros Nikolakopoulos Kit Roes UMC Utrecht Outline Comfortable or not with hybrid Bayesian-frequentist

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

Time Series and Dynamic Models

Time Series and Dynamic Models Time Series and Dynamic Models Section 1 Intro to Bayesian Inference Carlos M. Carvalho The University of Texas at Austin 1 Outline 1 1. Foundations of Bayesian Statistics 2. Bayesian Estimation 3. The

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

An extrapolation framework to specify requirements for drug development in children

An extrapolation framework to specify requirements for drug development in children An framework to specify requirements for drug development in children Martin Posch joint work with Gerald Hlavin Franz König Christoph Male Peter Bauer Medical University of Vienna Clinical Trials in Small

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

DART_LAB Tutorial Section 5: Adaptive Inflation

DART_LAB Tutorial Section 5: Adaptive Inflation DART_LAB Tutorial Section 5: Adaptive Inflation UCAR 14 The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Adaptive Designs: Why, How and When?

Adaptive Designs: Why, How and When? Adaptive Designs: Why, How and When? Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj ISBS Conference Shanghai, July 2008 1 Adaptive designs:

More information

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design Science Journal of Clinical Medicine 2014; 3(5): 82-90 Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/sjcm) doi: 10.11648/j.sjcm.20140305.12 ISSN: 2327-2724 (Print); ISSN:

More information

Inverse Sampling for McNemar s Test

Inverse Sampling for McNemar s Test International Journal of Statistics and Probability; Vol. 6, No. 1; January 27 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Inverse Sampling for McNemar s Test

More information

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b)

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b) LECTURE 5 NOTES 1. Bayesian point estimators. In the conventional (frequentist) approach to statistical inference, the parameter θ Θ is considered a fixed quantity. In the Bayesian approach, it is considered

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Paradoxical Results in Multidimensional Item Response Theory

Paradoxical Results in Multidimensional Item Response Theory UNC, December 6, 2010 Paradoxical Results in Multidimensional Item Response Theory Giles Hooker and Matthew Finkelman UNC, December 6, 2010 1 / 49 Item Response Theory Educational Testing Traditional model

More information

Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs. Christopher Jennison

Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs. Christopher Jennison Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs Christopher Jennison Department of Mathematical Sciences, University of Bath,

More information

Effect of investigator bias on the significance level of the Wilcoxon rank-sum test

Effect of investigator bias on the significance level of the Wilcoxon rank-sum test Biostatistics 000, 1, 1,pp. 107 111 Printed in Great Britain Effect of investigator bias on the significance level of the Wilcoxon rank-sum test PAUL DELUCCA Biometrician, Merck & Co., Inc., 1 Walnut Grove

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

INTERIM MONITORING AND CONDITIONAL POWER IN CLINICAL TRIALS. by Yanjie Ren BS, Southeast University, Nanjing, China, 2013

INTERIM MONITORING AND CONDITIONAL POWER IN CLINICAL TRIALS. by Yanjie Ren BS, Southeast University, Nanjing, China, 2013 INTERIM MONITORING AND CONDITIONAL POWER IN CLINICAL TRIALS by Yanjie Ren BS, Southeast University, Nanjing, China, 2013 Submitted to the Graduate Faculty of the Graduate School of Public Health in partial

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

arxiv: v2 [stat.me] 25 Feb 2011

arxiv: v2 [stat.me] 25 Feb 2011 arxiv:112.588v2 [stat.me] 25 Feb 211 Estimation of the relative risk following group sequential procedure based upon the weighted log-rank statistic Grant Izmirlian National Cancer Institute; Executive

More information

Play-the-winner rule in clinical trials: Models for adaptative designs and Bayesian methods

Play-the-winner rule in clinical trials: Models for adaptative designs and Bayesian methods Play-the-winner rule in clinical trials: Models for adaptative designs and Bayesian methods Bruno Lecoutre and Khadija Elqasyr ERIS, Laboratoire de Mathématiques Raphael Salem, UMR 6085, C.N.R.S. et Université

More information

Adaptive Trial Designs

Adaptive Trial Designs Adaptive Trial Designs Wenjing Zheng, Ph.D. Methods Core Seminar Center for AIDS Prevention Studies University of California, San Francisco Nov. 17 th, 2015 Trial Design! Ethical:!eg.! Safety!! Efficacy!

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

BIOS 312: Precision of Statistical Inference

BIOS 312: Precision of Statistical Inference and Power/Sample Size and Standard Errors BIOS 312: of Statistical Inference Chris Slaughter Department of Biostatistics, Vanderbilt University School of Medicine January 3, 2013 Outline Overview and Power/Sample

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Early Stopping in Randomized Clinical Trials

Early Stopping in Randomized Clinical Trials T. van Hees Early Stopping in Randomized Clinical Trials Bachelor Thesis Thesis Supervisor: prof. dr. R. D. Gill 29 August 2014 Mathematical Institute, Leiden University Contents 1 Introduction 1 1.1

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 5 Course Summary So far, we have discussed Group sequential procedures for two-sided tests Group

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure

SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure This document is an individual chapter from SAS/STAT 15.1 User s Guide. The correct bibliographic citation for this manual is as follows: SAS Institute

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Exam 2 Practice Questions, 18.05, Spring 2014

Exam 2 Practice Questions, 18.05, Spring 2014 Exam 2 Practice Questions, 18.05, Spring 2014 Note: This is a set of practice problems for exam 2. The actual exam will be much shorter. Within each section we ve arranged the problems roughly in order

More information

On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials

On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials Anastasios A. Tsiatis and Cyrus Mehta http://www.stat.ncsu.edu/ tsiatis/ Inefficiency of Adaptive Designs 1 OUTLINE OF TOPICS Hypothesis

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

arxiv: v1 [stat.me] 5 Nov 2017

arxiv: v1 [stat.me] 5 Nov 2017 Biometrics 99, 1 24 December 2010 DOI: 10.1111/j.1541-0420.2005.00454.x Likelihood Based Study Designs for Time-to-Event Endpoints arxiv:1711.01527v1 [stat.me] 5 Nov 2017 Jeffrey D. Blume Department of

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Technical Manual. 1 Introduction. 1.1 Version. 1.2 Developer

Technical Manual. 1 Introduction. 1.1 Version. 1.2 Developer Technical Manual 1 Introduction 1 2 TraditionalSampleSize module: Analytical calculations in fixed-sample trials 3 3 TraditionalSimulations module: Simulation-based calculations in fixed-sample trials

More information

Interval Estimation. Chapter 9

Interval Estimation. Chapter 9 Chapter 9 Interval Estimation 9.1 Introduction Definition 9.1.1 An interval estimate of a real-values parameter θ is any pair of functions, L(x 1,..., x n ) and U(x 1,..., x n ), of a sample that satisfy

More information

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018 Sample Size Re-estimation in Clinical Trials: Dealing with those unknowns Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj University of Kyoto,

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information