Quine-McCluskey (Tabular) Minimization

Size: px
Start display at page:

Download "Quine-McCluskey (Tabular) Minimization"

Transcription

1 Quine-McCluskey (Tabular) Minimization Two step process utilizing tabular listings to: Identify prime implicants (implicant tables) Identify minimal PI set (cover tables) All work is done in tabular form Number of variables is not a limitation Basis for many computer implementations Don t cares are easily handled Proper organization and term identification are key factors for correct results

2 Difficulty Note: Can be 2 n minterms ~ 3 n /n primes primes 3 n /n minterms 2 n Thus O(2 n ) rows and O(3 n /n ) columns and minimum covering problem is NP-complete. 2

3 Eample wy Karnaugh map Primes: Covering Table Solution: {,2} + (also ) F= wyz + wyz + wyz + wyz d= yz + wyz + yz + yz + wyz + wyz w yz z + + wy wy d d d z + d d d d d d is minimum prime cover. wyz wyz z wyz wyz 3 z wy

4 Covering Table wyz z wy Primes of f+d Minterms of f wyz wyz wyz Row singleton (essential minterm) Essential prime Definition: An essential prime is any prime that uniquely covers a minterm of f. 4

5 Quine-McCluskey Minimization (cont.) Terms are initially listed one per line in groups Each group contains terms with the same number of true and complemented variables Terms are listed in numerical order within group Terms and implicants are identified using one of three common notations full variable form cellular form,,- form

6 Eample of Different Notations F(A, B, C, D) = m (4,5,6,8,,3) Full variable Cellular,,- ABCD 4 ABCD 8 2 ABCD 5 ABCD 6 ABCD 3 ABCD 3

7 Notation Forms Full variable form: variables and complements in algebraic form hard to identify when adjacency applies very easy to make mistakes Cellular form: terms are identified by their decimal inde value easy to tell when adjacency applies; indees must differ by power of two (one bit),,- form: terms are identified by their binary inde value easier to translate to/from full variable form easy to identify when adjacency applies, one bit is different shows variable(s) dropped when adjacency is used Different forms may be mied during the minimization

8 Implication Table (,,-) Quine-McCluskey Method Tabular method to systematically find all prime implicants ƒ(a,b,c,d) = Σ m (,2.5,6,7,9,) + Σ d (,3,5) Part : Find all prime implicants Step : Fill Column with onset and DC-set minterm indices. Group by number of true variables (# of s). NOTE THAT DCs ARE INCLUDED IN THIS STEP! Column I Implication Table

9 Minimization - First Pass (,,-) Quine-McCluskey Method Tabular method to systematically find all prime implicants ƒ(a,b,c,d) = Σ m (,2.5,6,7,9,) + Σ d (,3,5) Part : Find all prime implicants Step 2: Apply Adjacency - Compare elements of group with N 's against those with N+ 's. One bit difference implies adjacent. Eliminate variable and place in net column. E.g., vs. yields - vs. yields - When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants. Repeat until nothing left. Column I Implication Table Column II -, -,2 -,5 -,9-2,6-2, - 5,7-5,3-6,7-9,3-7,5-3,5

10 Minimization - Second Pass (,,-) Quine-McCluskey Method Step 2 cont.: Apply Adjacency - Compare elements of group with N 's against those with N+ 's. One bit difference implies adjacent. Eliminate variable and place in net column. E.g., vs. yields - - vs. - yields -- When used in a combination, mark with a check. If cannot be combined, mark with a star. THESE ARE THE PRIME IMPLICANTS. Repeat until nothing left. The set of constitutes the Complete Sum c Column I Implication Table Column II - *, - *,2 -,5 -,9 - * 2,6 - * 2, - 5,7-5,3 - * 6.7-9,3-7,5-3,5 Column III -- *,5,9,3 - - *5,7,3,5

11 Prime Implicants ƒ(a,b,c,d) = Σ m (,2.5,6,7,9,) + Σ d (,3,5) C C D A B A D B Prime Implicants: - - A BC A C D - - A BD BC D - A BC -- B D -- C D Stage 2: find smallest set of prime implicants that cover the active-set Note that essential prime implicants must be in the final epression

12 Coverage Table rows = prime implicants columns = ON-set elements (minterms) place an "" if ON-set element is covered by the prime implicant NOTE: DON T INCLUDE DCs IN COVERAGE TABLE; THEY DON T HAVE TO BE MANDATORY COVERED Coverage Chart, ,2-2,6-2, - 6,7 -,5,9,3 -- 5,7,3,5 --

13 Row and Column Dominance Definition: Given two rows i and i 2, a row i is said to dominate i 2 if it has checks in all columns in which i 2 has checks, i.e. it is a superset of i 2 Eample: i i 2 i dominates i 2 We can remove row i 2, because we would never choose i 2 in a minimum cover since it can always be replaced by i (i 2 is anymore a prime implicant). DOMINATED ROWS CAN BE ELIMINATED 3

14 Row and Column Dominance Definition: Given two colums j and j 2, if the set of primes of column j 2 is contained in the set of primes of column j Eample: j 2 dominates j j j2 We can remove column j since we have to choose a prime to cover j 2, any such prime also covers j, that would result covered as well. DOMINATED COLUMNS CAN BE ELIMINATED 4

15 Pruning the Covering Table. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G. 2. Group identical rows together and remove dominated rows. 3. Remove dominating columns. For equal columns, keep just one to represent them. 4. Newly formed row singletons define n-ary essential primes. 5. Go to if covering table decreased. The algorithm may terminate successfully with a set of primes and an emty table. In case it terminate with a non empty table, the resulting reduced covering table is called the cyclic core. This has to be solved. A minimum solution for the cyclic core must be added to the resulting G. 5

16 Coverage Table (cont.) Coverage Chart, , ,2 -,2-2,6-2,6-2, - 2, - 6,7-6,7 -,5,9,3 --,5,9,3 -- 5,7,3,5 -- 5,7,3,5 -- If column has a single, than the implicant associated with the row is essential. It must appear in the minimum cover

17 Coverage Table (cont.), , ,2 -,2-2,6-2,6-2, - 2, - 6,7-6,7 -,5,9,3 --,5,9,3 -- 5,7,3,5 -- 5,7,3,5 -- Eliminate all columns covered by essential primes Find minimum set of rows that cover the remaining columns F = BCD + ABC + CD

18 Quine Mc Clunskey: Cyclic Core eample F= m (,,3,6,8,9,23,28,3,3) V = Y V = Y W W Z Z F=v w y +v w z+w y z +w yz+vw z +vw y+vwz +vwy+vw yz+vyz A B C D E F G H I J

19 Implication Table (,,-) Quine-McCluskey Method Tabular method to systematically find all prime implicants ƒ(v,w,,y,z) = Σm(,,3,6,8,9,23,28,3,3) Part : Find all prime implicants Step : Fill Column with activeset and DC-set minterm indices Group by number of true variables (# of s) Column I Implication Table Column II - * - * - * - * - * - * - * - * - * - * A: C: 6 B: 3 E:6 8 D: 3 9 F: 8 9 I: 9 23 G:28 3 J: 23 3 H: 3 3 F=v w y +v w z+w y z +w yz+vw z +vw y+vwz +vwy+vw yz+vyz A B C D E F G H I J

20 Quine Mc Clunskey F= 5 (,,3,6,8,9,23,28,3,3) A B C D E F G H I J G+J+A+D+E; G+J+B+C+F; G+J+C+B+F; G+J+D+A+E; G+J+E+A+D; G+J+F+B+C.

21 Quine Mc Clunskey: Cyclic Core eample F= m (,,3,6,8,9,23,28,3,3) V = Y V = Y G:28 3 J:23 3 A: D: 3 9 E:6 8 W W B: 3 C: 6 F:8 9 Z PRIME ESSENTIAL Z I: 9 23 H:3 3 F=v w y +v w z+w y z +w yz+vw z +vw y+vwz +vwy+vw yz+vyz A B C D E F G H I J G+J+A+D+E; G+J+B+C+F

22 Generating Primes multiple outputs Eample: f(, y, z) = m(3,5,7), f2(, y, z) = m(,2,3) f z y f2 y z - - f=yz+z -- - y z f2=z+y - - z y z y z f f2 z y z z f f2 The idea is that we can share terms: using separate optimizations 6 gates and G=2 sharing a term 5 gates and G= f f2= (yz+z)(z+y) f f2 = yz 22

23 Generating Primes multiple outputs Theorem: if p is a prime implicant for f, and p 2 is a prime implicant for f 2, then if p.p 2, p.p 2 is a prime implicant of f.f 2 Theorem: if p 3 is a prime implicant for f.f 2, then there eist p for f, and p 2 for f 2, such that p 3 =p.p 2 We can conclude that all prime implicants of f.f 2 are minimal sharable products for f and f 2 : and that all prime implicants for f.f 2 are created by products of prime implicants for f and f 2 The way to use this is to make the prime implicants of f.f 2 available to the minimizations of f and f 2 by etending the table concept 23

24 Generating Primes multiple outputs Procedure similar to single-output function, ecept: include also the primes of the products of individual functions f minterms f 2 minterms Rows for f prime implicants: mark only f columns Rows for f 2 prime implicants: mark only f 2 columns Rows for f f 2 prime implicants: mark both f and f 2 columns

25 Minimize multiple-output cover f f 2 f f 2 Eample, cont. m 3 = m 5 = m 7 = m = m 2 = m 3 = m 3 = p = y z p 2 = z p 3 = y p 4 = z - p 5 = y z m 3 m 5 m 7 m m 2 m 3 p p 2 p 3 p 4 p 5 f f 2 p p 3 m 3 m 3 p 5 Note that selecting p 5 and removing all columns the marks coverage is complete Min cover has 3 primes: F = { p 2, p 4, p 5 } 25

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS221: Digital Design QMLogicMinimization Minimization Dr. A. Sahu DeptofComp.Sc.&Engg. Indian Institute of Technology Guwahati 1 Outline Quine McCluskey(QM) Logic Minimization Examples Writing C/C++ program

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 24 Two-Level Logic Minimization (/2) Reading: Logic Synthesis in a Nutshell

More information

L6: Two-level minimization. Reading material

L6: Two-level minimization. Reading material L6: Two-level minimization Reading material de Micheli pp. 269-343 p. 2 - Advanced Logic Design L6 - Elena Dubrova Formulation of the two-level minimization problem input: a Boolean function f(x,x 2,...,x

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Unit 6. Quine-McClusky Method. Unit 6 1

Unit 6. Quine-McClusky Method. Unit 6 1 Unit 6 Quine-McClusky Method Unit 6 1 Outline Determination of prime implicants The prime implicant chart Petrick s method Simplification of incompletely specified functions Unit 6 2 Overview (1/2) A systematic

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active

More information

CS/EE 181a 2008/09 Lecture 4

CS/EE 181a 2008/09 Lecture 4 CS/EE 181a 28/9 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

CSE 140: Components and Design Techniques for Digital Systems

CSE 140: Components and Design Techniques for Digital Systems Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean Algebra

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

Chapter 4 Optimized Implementation of Logic Functions

Chapter 4 Optimized Implementation of Logic Functions Chapter 4 Optimized Implementation of Logic Functions Logic Minimization Karnaugh Maps Systematic Approach for Logic Minimization Minimization of Incompletely Specified Functions Tabular Method for Minimization

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

Exact and heuristic minimization of Boolean functions

Exact and heuristic minimization of Boolean functions Eact and heuristic minimization of Boolean functions Quine a McCluskey Method a) Generation of all prime implicants b) Selection of a minimum subset of prime implicants, which will represent the original

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents B-1 Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix B: Reduction of Digital Logic B-2 Chapter Contents B.1 Reduction of Combinational Logic and Sequential Logic B.2 Reduction

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundamental Algorithms for System Modeling, Analysis, and Optimization Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia UC Berkeley EECS 244 Fall 2016 Lecturer: Yu-Yun Dai Copyright 2010-date, E.

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

Lecture 4: Four Input K-Maps

Lecture 4: Four Input K-Maps Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems Fall 24 CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 36

Contents. Chapter 3 Combinational Circuits Page 1 of 36 Chapter 3 Combinational Circuits Page of 36 Contents Combinational Circuits...2 3. Analysis of Combinational Circuits...3 3.. Using a Truth Table...3 3..2 Using a Boolean Function...6 3.2 Synthesis of

More information

Minimierung. Wintersemester 2018/19. Folien basierend auf Material von F. Vahid und S. Werner Vorlesender: Dr. Ing.

Minimierung. Wintersemester 2018/19. Folien basierend auf Material von F. Vahid und S. Werner Vorlesender: Dr. Ing. Minimierung Grundlagen der technischen Informatik Wintersemester 28/9 Folien basierend auf Material von F. Vahid und S. Werner Wintersemester 28/9 Review - Boolean Algebra Properties Commutative (Kommutativgesetz)

More information

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1 Digital Logic COMP370 Introduction to Computer Architecture Logic Simplification It is frequently possible to simplify a logical expression. This makes it easier to understand and requires fewer gates

More information

Introduction to Karnaugh Maps

Introduction to Karnaugh Maps Introduction to Karnaugh Maps Review So far, you (the students) have been introduced to truth tables, and how to derive a Boolean circuit from them. We will do an example. Consider the truth table for

More information

Logic Synthesis and Verification. Two-Level Logic Minimization (1/2) Quine-McCluskey Procedure. Complexity

Logic Synthesis and Verification. Two-Level Logic Minimization (1/2) Quine-McCluskey Procedure. Complexity Logic Synthesis an Verification Two-Level Logic Minimization (/2) Jie-Hong Rolan Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 24 Reaing: Logic Synthesis in a Nutshell

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 2 Circuit Optimization

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 2 Circuit Optimization Logic and omputer Design Fundamentals hapter 2 ombinational Logic ircuits Part 2 ircuit Optimization harles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid SE140: omponents and Design Techniques for Digital Systems Simplification of logic functions Tajana Simunic Rosing 1 What we covered thus far: Number representations Where we are now inary, Octal, Hex,

More information

CS/EE 181a 2010/11 Lecture 4

CS/EE 181a 2010/11 Lecture 4 CS/EE 181a 21/11 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

Digital Logic Circuits - Switching Algebra - Combinational Circuits -

Digital Logic Circuits - Switching Algebra - Combinational Circuits - Digital Logic Circuits - Switching Algebra - Combinational Circuits - Dr. Voicu Groza SITE Hall, Room 57 562 58 ext. 259 Groza@EECS.uOttawa.ca Outline Logic Functions Boolean Algebra Logic Functions Minimization

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Binary logic consists of binary variables and logical operations. The variables are

Binary logic consists of binary variables and logical operations. The variables are 1) Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Textbook: Digital Design, 3 rd. Edition M. Morris Mano

Textbook: Digital Design, 3 rd. Edition M. Morris Mano : 25/5/ P-/70 Tetbook: Digital Design, 3 rd. Edition M. Morris Mano Prentice-Hall, Inc. : INSTRUCTOR : CHING-LUNG SU E-mail: kevinsu@yuntech.edu.tw Chapter 3 25/5/ P-2/70 Chapter 3 Gate-Level Minimization

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

COM111 Introduction to Computer Engineering (Fall ) NOTES 6 -- page 1 of 12

COM111 Introduction to Computer Engineering (Fall ) NOTES 6 -- page 1 of 12 COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 6 -- page 1 of 12 Karnaugh Maps In this lecture, we will discuss Karnaugh maps (K-maps) more formally than last time and discuss a more

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

REPRESENTATION AND MINIMIZATION OF BOOLEAN FUNCTIONS. Part II Minimization of Boolean Functions.

REPRESENTATION AND MINIMIZATION OF BOOLEAN FUNCTIONS. Part II Minimization of Boolean Functions. Bulletin of the Marathwada Mathematical Society Vol.5, No.1, June 2004, Pages 35-44 REPRESENTATION AND MINIMIZATION OF BOOLEAN FUNCTIONS. Part II Minimization of Boolean Functions. S.R. Joshi 3, Accharya

More information

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES L4: Karnaugh diagrams, two-, and multi-level minimization Elena Dubrova KTH / ICT / ES dubrova@kth.se Combinatorial system a(t) not(a(t)) A combinatorial system has no memory - its output depends therefore

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Spiral 1 / Unit 5. Karnaugh Maps

Spiral 1 / Unit 5. Karnaugh Maps -. Spiral / Unit Karnaugh Maps -. Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand latency, throughput, and at least technique to improve

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2 ECE-7: Digital Logic Design Winter 8 Notes - Unit OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS BASIC TECHNIQUES: We can alas minimie logic unctions using the Boolean theorems. Hoever, more poerul methods

More information

CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha. BCD Codes

CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha. BCD Codes CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha BCD Codes Q. Give representation of the decimal number 853 in each of the following codes. (a) 8421 code (c) 84(-2)(-1) code (b) Excess-three

More information

Outcomes. Spiral 1 / Unit 5. Logic Function Synthesis KARNAUGH MAPS. Karnaugh Maps

Outcomes. Spiral 1 / Unit 5. Logic Function Synthesis KARNAUGH MAPS. Karnaugh Maps -. -. Spiral / Unit Mark Redekopp Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand latency, throughput, and at least technique to improve

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Karnaugh Maps ف ر آ ا د : ا ا ب ا م آ ه ا ن ر ا

Karnaugh Maps ف ر آ ا د : ا ا ب ا م آ ه ا ن ر ا Karnaugh Maps مخطط آارنوف اعداد:محمد اسماعيل آلية علوم الحاسوب جامعة امدرمان الاهلية الاهداء الي آل من يسلك طريق العلم والمعرفة في هذا المجال Venn Diagrams Venn diagram to represent the space of minterms.

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS 202.0.5. DIGITL TECHNICS I Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS st year BSc course st (utumn) term 202/203 5. LECTURE. Karnaugh map applications

More information

Outcomes. Spiral 1 / Unit 5. Logic Function Synthesis KARNAUGH MAPS. Karnaugh Maps

Outcomes. Spiral 1 / Unit 5. Logic Function Synthesis KARNAUGH MAPS. Karnaugh Maps -. -. Spiral / Unit Mark Redekopp Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand latency, throughput, and at least technique to improve

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture) Email: abk@ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches Synthesis of 2-level Logic Exact and Heuristic Methods Lecture 7: Branch & Bound Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

Chapter 3. Boolean Algebra. (continued)

Chapter 3. Boolean Algebra. (continued) Chapter 3. Boolean Algebra (continued) Algebraic structure consisting of: set of elements B binary operations {+, -} unary operation {'} Boolean Algebra such that the following axioms hold:. B contains

More information

Logical Design of Digital Systems

Logical Design of Digital Systems Lecture 4 Table of Content 1. Combinational circuit design 2. Elementary combinatorial circuits for data transmission 3. Memory structures 4. Programmable logic devices 5. Algorithmic minimization approaches

More information

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps CMSC 33 Lecture 9 Combinational Logic Components Programmable Logic rrays Karnaugh Maps UMC, CMSC33, Richard Chang Last Time & efore Returned midterm exam Half adders & full adders Ripple

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

9.1. Unit 9. Implementing Combinational Functions with Karnaugh Maps or Memories

9.1. Unit 9. Implementing Combinational Functions with Karnaugh Maps or Memories . Unit Implementing Combinational Functions with Karnaugh Maps or Memories . Outcomes I can use Karnaugh maps to synthesize combinational functions with several outputs I can determine the appropriate

More information

Logic Minimization. Two-Level. University of California. Prof. Srinivas Devadas. Prof. Richard Newton Prof. Sanjit Seshia. Prof.

Logic Minimization. Two-Level. University of California. Prof. Srinivas Devadas. Prof. Richard Newton Prof. Sanjit Seshia. Prof. Two-Level Logic Minimization Prof. Srinivas Devadas MIT Prof. Kurt Keutzer Prof. Richard Newton Prof. Sanjit Seshia University of California Berkeley, CA 1 Topics Motivation Boolean functions & notation

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN :: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall Lecture #: Combinational Circuit Synthesis II hat if we have input variables? V = V = of Example with variables

More information

Reduction of Logic Equations using Karnaugh Maps

Reduction of Logic Equations using Karnaugh Maps Reduction of Logic Equations using Karnaugh Maps The design of the voting machine resulted in a final logic equation that was: z = (a*c) + (a*c) + (a*b) + (a*b*c) However, a simple examination of this

More information

Karnaugh Maps (K-Maps)

Karnaugh Maps (K-Maps) Karnaugh Maps (K-Maps) Boolean expressions can be minimized by combining terms P + P = P K-maps minimize equations graphically Put terms to combine close to one another B C C B B C BC BC BC BC BC BC BC

More information

PI = { a.b.c, ac d, b cd, ab d, bd} cd

PI = { a.b.c, ac d, b cd, ab d, bd} cd Digital Logic Design: Principles and Practices ELG5195 (EACJ5705 ), Carleton CRN: 18371 Assignment #1 Question 1: a) Using iterated consensus find all the prime implicants of the following function: F(

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

MODULAR CIRCUITS CHAPTER 7

MODULAR CIRCUITS CHAPTER 7 CHAPTER 7 MODULAR CIRCUITS A modular circuit is a digital circuit that performs a specific function or has certain usage. The modular circuits to be introduced in this chapter are decoders, encoders, multiplexers,

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS221: Digital Design QMLogicMinimization Minimization Dr. A. Sahu DeptofComp.Sc.&Engg. Indian Institute of Technology Guwahati 1 Outline Study of Components Logic Implementation Using MUX & Decoder 4

More information

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Eperiment and Design of Electronics LOGIC GATES Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Boolean algebra Logic gates Karnaugh maps

More information

CHAPTER 7. Solutions for Exercises

CHAPTER 7. Solutions for Exercises CHAPTER 7 Solutions for Exercises E7.1 (a) For the whole part we have: Quotient Remainders 23/2 11 1 11/2 5 1 5/2 2 1 2/2 1 0 1/2 0 1 Reading the remainders in reverse order we obtain: 23 10 = 10111 2

More information

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification CMSC 33 Lecture 9 Homework 4 Questions Combinational Logic Components Programmable Logic rrays Introduction to Circuit Simplification UMC, CMSC33, Richard Chang CMSC 33, Computer Organization

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

CMSC 313 Preview Slides

CMSC 313 Preview Slides CMSC 33 Preview Slies These are raft slies. The actual slies presente in lecture may be ifferent ue to last minute changes, scheule slippage,... UMBC, CMSC33, Richar Chang CMSC 33 Lecture

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Simlification of Switching Functions

Simlification of Switching Functions Simlification of Switching unctions ( ) = ( 789 5) Quine-Mc luskey Original nonminimized oolean function m i m i m n m i [] m m m m m 4 m 5 m 6 m 7 m 8 m 9 m m m m m 4 m 5 m m m 7 m 8 m 9 m m 5 The number

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

ESE535: Electronic Design Automation. Today. Problem. EDA Use PLA. Programmable Array Logic (PLAs) Two-Level Logic Optimization

ESE535: Electronic Design Automation. Today. Problem. EDA Use PLA. Programmable Array Logic (PLAs) Two-Level Logic Optimization ESE535: Electronic Design Automation Today Day 4: February 25, 2009 Two-Level Logic-Synthesis Two-Level Logic Optimization Problem Definitions Basic Algorithm: Quine-McClusky Improvements 1 2 Problem EDA

More information

K-map Definitions. abc

K-map Definitions. abc K-map efinitions b a bc Implicant ny single or any group of s is called an implicant of F. ny possible grouping of s is an implicant. b a Prime Implicant implicant that cannot be combined with some other

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information