CHAPTER III BOOLEAN ALGEBRA

Size: px
Start display at page:

Download "CHAPTER III BOOLEAN ALGEBRA"

Transcription

1 CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v..

2 CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables. Values and variables can indicate some of the following binary pairs of values: ON / OFF TRUE / FALSE HIGH / LOW CLOSED / OPEN / R.M. Dansereau; v..

3 CHAPTER III-3 BOOL. OPERATIONS FUNDAMENTAL OPERATORS BOOLEAN VALUES -INTRODUCTION Three fundamental operators in Boolean algebra NOT: unary operator that complements represented as A, A, or A AND: binary operator which performs logical multiplication i.e. A ANDed with B would be represented as AB or A B OR: binary operator which performs logical addition i.e. A ORed with B would be represented as A+ B NOT AND OR A A A B AB A B A + B R.M. Dansereau; v..

4 CHAPTER III-4 BOOL. OPERATIONS BINARY BOOLEAN OPERATORS BOOLEAN OPERATIONS -FUNDAMENTAL OPER. Below is a table showing all possible Boolean functions given the twoinputs A and B. F N A B F F F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F F F 2 F 3 F 4 F 5 AB A B A + B B A AB Null A B A B Identity Inhibition A + B Implication R.M. Dansereau; v..

5 CHAPTER III-5 PRECEDENCE OF OPERATORS BOOLEAN OPERATIONS -FUNDAMENTAL OPER. -BINARY BOOLEAN OPER. Boolean expressions must be evaluated with the following order of operator precedence parentheses NOT AND OR Example: F = ( A( C+ BD) + BC)E F = A C + BD { + BC { E { R.M. Dansereau; v..

6 CHAPTER III-6 FUNCTION EVALUATION BOOLEAN OPERATIONS -PRECEDENCE OF OPER. Example : Evaluate the following expression when A =, B =, C = Solution Example 2: Evaluate the following expression when A =, B =, C =, D = Solution F = C+ CB + BA F = + + = + + = F = D( BCA + ( AB+ C) + C) F = ( + ( + ) + ) = ( + + ) = = R.M. Dansereau; v..

7 CHAPTER III-7 BASIC IDENTITIES BOOLEAN OPERATIONS -PRECEDENCE OF OPER. -FUNCTION EVALUATION X + = X X + = X + X = X X + X = ( X ) = X X + Y = Y + X X = X X = X X = XY = YX X + ( Y + Z) = ( X + Y) + Z XYZ ( ) = ( XY)Z XY ( + Z) = XY + XZ X + YZ = ( X + Y) ( X + Z) X X + XY = X + X Y = X + Y ( X + Y) = X Y X X = X XX ( + Y) = X XX ( + Y) = XY ( XY) = X + Y XY + X Z + YZ ( X + Y) ( X + Z) ( Y + Z) = XY + X Z = ( X + Y) ( X + Z) Identity Idempotent Law Complement Involution Law Commutativity Associativity Distributivity Absorption Law Simplification DeMorgan s Law Consensus Theorem R.M. Dansereau; v..

8 CHAPTER III-8 DUALITY PRINCIPLE -PRECEDENCE OF OPER. -FUNCTION EVALUATION -BASIC IDENTITIES Duality principle: States that a Boolean equation remains valid if we take the dual of the expressions on both sides of the equals sign. The dual can be found by interchanging the AND and OR operators along with also interchanging the s and s. This is evident with the duals in the basic identities. For instance: DeMorgan s Law can be expressed in two forms ( X + Y) = X Y as well as ( XY) = X + Y R.M. Dansereau; v..

9 CHAPTER III-9 FUNCTION MANIPULATION () -FUNCTION EVALUATION -BASIC IDENTITIES -DUALITY PRINCIPLE Example: Simplify the following expression F = BC + BC + BA Simplification F = B( C + C) + BA F = B + BA F = B( + A) F = B R.M. Dansereau; v..

10 CHAPTER III- FUNCTION MANIPULATION (2) -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION Example: Simplify the following expression F = A + AB + ABC + ABCD + ABCDE Simplification F = A + A( B + BC + BCD + BCDE) F = A+ B+ BC+ BCD+ BCDE F = A+ B+ B( C+ CD+ CDE) F = A+ B+ C+ CD+ CDE F = A+ B+ C+ C( D+ DE) F = A+ B+ C+ D+ DE F = A+ B+ C+ D+ E R.M. Dansereau; v..

11 CHAPTER III- FUNCTION MANIPULATION (3) -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION Example: Show that the following equality holds ABC ( + BC) = A+ ( B + C) ( B + C) Simplification ABC ( + BC) = A + ( BC+ BC) = A + ( BC) ( BC) = A + ( B + C) ( B+ C) R.M. Dansereau; v..

12 CHAPTER III-2 STANDARD FORMS SOP AND POS -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION Boolean expressions can be manipulated into many forms. Some standardized forms are required for Boolean expressions to simplify communication of the expressions. Sum-of-products (SOP) Example: F( A, B, C, D) = AB + BCD + AD Products-of-sums (POS) Example: FABCD (,,, ) = ( A+ B) ( B+ C + D) ( A + D) R.M. Dansereau; v..

13 R.M. Dansereau; v.. INTRO. TO COMP. ENG. CHAPTER III-3 STANDARD FORMS MINTERMS STANDARD FORMS -SOP AND POS The following table gives the minterms for a three-input system A B C ABC ABC ABC ABC ABC ABC ABC ABC m 2 m 3 m 4 m m m 5 m 6 m 7

14 CHAPTER III-4 STANDARD FORMS SUM OF MINTERMS STANDARD FORMS -SOP AND POS -MINTERMS Sum-of-minterms standard form expresses the Boolean or switching expression in the form of a sum of products using minterms. For instance, the following Boolean expression using minterms FABC (,, ) = ABC + ABC + ABC + ABC could instead be expressed as FABC (,, ) = m + m + m 4 + m 5 or more compactly FABC (,, ) = m(,, 4, 5) = one-set(,, 4, 5) R.M. Dansereau; v..

15 CHAPTER III-5 STANDARD FORMS MAXTERMS STANDARD FORMS -SOP AND POS -MINTERMS -SUM OF MINTERMS The following table gives the maxterms for a three-input system M M M 2 M 3 M 4 M 5 M 6 M 7 A B C A+ B+ C A+ B+ C A + B + C A + B + C A+ B+ C A + B + C A + B + C A+ B+ C R.M. Dansereau; v..

16 CHAPTER III-6 STANDARD FORMS PRODUCT OF MAXTERMS STANDARD FORMS -MINTERMS -SUM OF MINTERMS -MAXTERMS Product-of-maxterms standard form expresses the Boolean or switching expression in the form of product of sums using maxterms. For instance, the following Boolean expression using maxterms FABC (,, ) = ( A+ B+ C) ( A+ B+ C) ( A+ B + C) could instead be expressed as FABC (,, ) = M M 4 M 7 or more compactly as FABC (,, ) = M(, 4, 7) = zero-set(, 4, 7) R.M. Dansereau; v..

17 CHAPTER III-7 STANDARD FORMS MINTERM AND MAXTERM EXP. STANDARD FORMS -SUM OF MINTERMS -MAXTERMS -PRODUCT OF MAXTERMS Given an arbitrary Boolean function, such as FABC (,, ) = AB + B( A + C) how do we form the canonical form for: sum-of-minterms Expand the Boolean function into a sum of products. Then take each term with a missing variable X and AND it with X + X. product-of-maxterms Expand the Boolean function into a product of sums. Then take each factor with a missing variable X and OR it with XX. R.M. Dansereau; v..

18 CHAPTER III-8 STANDARD FORMS FORMING SUM OF MINTERMS STANDARD FORMS -MAXTERMS -PRODUCT OF MAXTERMS -MINTERM & MAXTERM Example FABC (,, ) = AB + B( A + C) = AB + AB + BC = = = AB( C + C) + AB( C + C) +( A + A)BC ABC + ABC + ABC + ABC + ABC m(,, 4, 6, 7) A B C F Minterms listed as s in Truth Table R.M. Dansereau; v..

19 CHAPTER III-9 STANDARD FORMS FORMING PROD OF MAXTERMS STANDARD FORMS -PRODUCT OF MAXTERMS -MINTERM & MAXTERM -FORM SUM OF MINTERMS Example F( A, B, C) = AB + B( A + C) = AB + AB + BC = = = = ( A + B) ( A + B + C) ( A + B + C) ( A + B + CC) ( A+ B+ C) ( A+ B+ C) ( A + B + C) ( A + B + C) ( A + B + C) M( 2, 3, 5) A B C F (using distributivity) Maxterms listed as s in Truth Table R.M. Dansereau; v..

20 CHAPTER III-2 STANDARD FORMS CONVERTING MIN AND MAX STANDARD FORMS -MINTERM & MAXTERM -SUM OF MINTERMS -PRODUCT OF MAXTERMS Converting between sum-of-minterms and product-of-maxterms The two are complementary, as seen by the truth tables. To convert interchange the and, then use missing terms. Example: The example from the previous slides FABC (,, ) = m(,, 4, 6, 7) is re-expressed as F( A, B, C) = M( 2, 3, 5) where the numbers 2, 3, and 5 were missing from the minterm representation. R.M. Dansereau; v..

21 CHAPTER III-2 SIMPLIFICATION KARNAUGH MAPS STANDARD FORMS -SUM OF MINTERMS -PRODUCT OF MAXTERMS -CONVERTING MIN & MAX Often it is desired to simplify a Boolean function. A quick graphical approach is to use Karnaugh maps. 2-variable Karnaugh map 3-variable Karnaugh map 4-variable Karnaugh map CD AB A B BC A F = AB F = AB + C F = AB + CD R.M. Dansereau; v..

22 CHAPTER III-22 SIMPLIFICATION KARNAUGH MAP ORDERING STANDARD FORMS SIMPLIFICATION -KARNAUGH MAPS Notice that the ordering of cells in the map are such that moving from one cell to an adjacent cell only changes one variable. 2-variable Karnaugh map 3-variable Karnaugh map 4-variable Karnaugh map CD D D D AB BC A B C C C 3 2 A A A 3 2 A A 2 3 A A 8 9 B B B B C C B B B This ordering allows for grouping of minterms/maxterms for simplification. R.M. Dansereau; v..

23 CHAPTER III-23 SIMPLIFICATION IMPLICANTS STANDARD FORMS SIMPLIFICATION -KARNAUGH MAPS -KARNAUGH MAP ORDER Implicant Bubble covering only s (size of bubble must be a power of 2). Prime implicant Bubble that is expanded as big as possible (but increases in size by powers of 2). Essential prime implicant Bubble that contains a covered only by itself and no other prime implicant bubble. Non-essential prime implicant A that can be bubbled by more then one prime implicant bubble. CD AB R.M. Dansereau; v..

24 CHAPTER III-24 SIMPLIFICATION PROCEDURE FOR SOP SIMPLIFICATION -KARNAUGH MAPS -KARNAUGH MAP ORDER -IMPLICANTS Procedure for finding the SOP from a Karnaugh map Step : Form the 2-, 3-, or 4-variable Karnaugh map as appropriate for the Boolean function. Step 2: Identify all essential prime implicants for s in the Karnaugh map Step 3: Identify non-essential prime implicants for s in the Karnaugh map. Step 4: For each essential and one selected non-essential prime implicant from each set, determine the corresponding product term. Step 5: Form a sum-of-products with all product terms from previous step. R.M. Dansereau; v..

25 CHAPTER III-25 SIMPLIFICATION EXAMPLE FOR SOP () SIMPLIFICATION -KARNAUGH MAP ORDER -IMPLICANTS -PROCEDURE FOR SOP Simplify the following Boolean function F( A, B, C) = m(,, 4, 5) = ABC + ABC + ABC + ABC Solution: BC A zero-set( 2, 3, 6, 7) one-set(,, 4, 5) The essential prime implicants are B. There are no non-essential prime implicants. The sum-of-products solution is F = B. R.M. Dansereau; v..

26 CHAPTER III-26 SIMPLIFICATION EXAMPLE FOR SOP (2) SIMPLIFICATION -IMPLICANTS -PROCEDURE FOR SOP -EXAMPLE FOR SOP Simplify the following Boolean function FABC (,, ) = m(,, 4, 6, 7) = ABC + ABC + ABC + ABC + ABC Solution: BC A zero-set( 235,, ) one-set(,, 4, 6, 7) The essential prime implicants are AB and AB. The non-essential prime implicants are BC or AC. The sum-of-products solution is F = AB+ AB+ BC or F = AB+ AB+ AC. R.M. Dansereau; v..

27 CHAPTER III-27 SIMPLIFICATION PROCEDURE FOR POS SIMPLIFICATION -IMPLICANTS -PROCEDURE FOR SOP -EXAMPLE FOR SOP Procedure for finding the SOP from a Karnaugh map Step : Form the 2-, 3-, or 4-variable Karnaugh map as appropriate for the Boolean function. Step 2: Identify all essential prime implicants for s in the Karnaugh map Step 3: Identify non-essential prime implicants for s in the Karnaugh map. Step 4: For each essential and one selected non-essential prime implicant from each set, determine the corresponding sum term. Step 5: Form a product-of-sums with all sum terms from previous step. R.M. Dansereau; v..

28 CHAPTER III-28 SIMPLIFICATION EXAMPLE FOR POS () SIMPLIFICATION -PROCEDURE FOR SOP -EXAMPLE FOR SOP -PROCEDURE FOR POS Simplify the following Boolean function FABC (,, ) = M( 2, 3, 5) = ( A + B+ C) ( A+ B+ C) ( A+ B+ C) Solution: BC A zero-set( 2, 3, 5) one-set(,, 4, 6, 7) The essential prime implicants are A + B + C and A + B. There are no non-essential prime implicants. The product-of-sums solution is F = ( A+ B) ( A + B+ C). R.M. Dansereau; v..

29 CHAPTER III-29 SIMPLIFICATION EXAMPLE FOR POS (2) SIMPLIFICATION -EXAMPLE FOR SOP -PROCEDURE FOR POS -EXAMPLE FOR POS Simplify the following Boolean function Solution: The essential prime implicants are B + C and B+ C+ D. The non-essential prime implicants can be A + B + D or A+ C+ D. The product-of-sums solution can be either or F( A, B, C) = M(,, 5, 7, 8, 9, 5) F = ( B+ C) ( B+ C+ D) ( A + B + D) F = ( B+ C) ( B+ C+ D) ( A + C + D) zero-set(,, 5, 7, 8, 9, 5) one-set( 2, 3, 4, 6,,, 2, 3, 4) CD AB R.M. Dansereau; v..

30 CHAPTER III-3 SIMPLIFICATION DON T-CARE CONDITION SIMPLIFICATION -EXAMPLE FOR SOP -PROCEDURE FOR POS -EXAMPLE FOR POS Switching expressions are sometimes given as incomplete, or with don tcare conditions. Having don t-care conditions can simplify Boolean expressions and hence simplify the circuit implementation. Along with the zero-set () and one-set (), we will also have dc (). Don t-cares conditions in Karnaugh maps Don t-cares will be expressed as an X or - in Karnaugh maps. Don t-cares can be bubbled along with the s or s depending on what is more convenient and help simplify the resulting expressions. R.M. Dansereau; v..

31 CHAPTER III-3 SIMPLIFICATION DON T-CARE EXAMPLE () SIMPLIFICATION -PROCEDURE FOR POS -EXAMPLE FOR POS -DON T-CARE CONDITION Find the SOP simplification for the following Karnaugh map CD AB zero-set(,, 5, 7, 8, 9, 5) one-set( 2, 3, 4, 6,, 2) dc(, 3, 4) Taken to be Solution: X X X The essential prime implicants are BD and BC. There are no non-essential prime implicants. Taken to be The sum-of-products solution is F = BC+ BD. R.M. Dansereau; v..

32 CHAPTER III-32 SIMPLIFICATION DON T-CARE EXAMPLE (2) SIMPLIFICATION -EXAMPLE FOR POS -DON T-CARE CONDITION -DON T-CARE EXAMPLE Find the POS simplification for the following Karnaugh map CD AB Taken to be Solution: X X X The essential prime implicants are B + C and B + D. There are no non-essential prime implicants. The product-of-sums solution is F = ( B+ C) ( B + D). zero-set(,, 5, 7, 8, 9, 5) one-set( 2, 3, 4, 6,, 2) dc(, 3, 4) Taken to be R.M. Dansereau; v..

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

Chapter 2 : Boolean Algebra and Logic Gates

Chapter 2 : Boolean Algebra and Logic Gates Chapter 2 : Boolean Algebra and Logic Gates By Electrical Engineering Department College of Engineering King Saud University 1431-1432 2.1. Basic Definitions 2.2. Basic Theorems and Properties of Boolean

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT):

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT): ENGI 386 Digital Logic II. COMBINATIONAL LOGIC DESIGN Combinational Logic output of digital system is only dependent on current inputs (i.e., no memory) (a) Boolean Algebra - developed by George Boole

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 2.1 Introduction We will use variables like x or y to represent inputs and outputs (I/O) of a switching circuit. Since most switching circuits are 2 state devices (having only 2

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Today s Topics Boolean algebra applications in logic

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Ch1: Digital Systems and Binary Numbers Ch2: Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters Switching Theory & Logic Design Prof. Adnan

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 1. Developed by George Boole in 1847 2. Applied to the Design of Switching Circuit by Claude Shannon in 1939 Department of Communication Engineering, NCTU 1 2.1 Basic Operations

More information

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENEL 353 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2016 SN s ENEL 353 Fall 2016 Slide Set 3 slide

More information

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture) Email: abk@ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

EEE130 Digital Electronics I Lecture #4

EEE130 Digital Electronics I Lecture #4 EEE130 Digital Electronics I Lecture #4 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi Topics to be discussed 4-1 Boolean Operations and Expressions 4-2 Laws and Rules of Boolean

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

UNIT 3 BOOLEAN ALGEBRA (CONT D)

UNIT 3 BOOLEAN ALGEBRA (CONT D) UNIT 3 BOOLEAN ALGEBRA (CONT D) Spring 2011 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

More information

Digital Logic Design. Malik Najmus Siraj

Digital Logic Design. Malik Najmus Siraj Digital Logic Design Malik Najmus Siraj siraj@case.edu.pkedu LECTURE 4 Today s Agenda Recap 2 s complement Binary Logic Boolean algebra Recap Computer Arithmetic Signed numbers Radix and diminished radix

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Basic

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Chapter 2 Combinational logic

Chapter 2 Combinational logic Chapter 2 Combinational logic Chapter 2 is very easy. I presume you already took discrete mathemtics. The major part of chapter 2 is boolean algebra. II - Combinational Logic Copyright 24, Gaetano Borriello

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Binary logic consists of binary variables and logical operations. The variables are

Binary logic consists of binary variables and logical operations. The variables are 1) Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two

More information

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways:

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: Boolean Algebra (1) Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: An expression is finite but not unique f(x,y)

More information

Computer Organization I

Computer Organization I Computer Organization I Lecture 6: Boolean Algebra /2/29 Wei Lu CS283 Overview Two Principles in Boolean Algebra () Duality Principle (2) Complement Principle Standard Form of Logic Expression () Sum of

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

Chapter 2 Combinational

Chapter 2 Combinational Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations HOANG Trang Reference: 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean

More information

Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates. By : Ali Mustafa Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

T9: Covering. Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms. Number Theorem. T9 B (B+C) = B Covering

T9: Covering. Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms. Number Theorem. T9 B (B+C) = B Covering T9: Covering Number Theorem Name T9 B (B+C) = B Covering Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms Chapter 2 T9: Covering Number Theorem Name T9 B (B+C)

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

Binary Logic and Gates. Our objective is to learn how to design digital circuits.

Binary Logic and Gates. Our objective is to learn how to design digital circuits. Binary Logic and Gates Introduction Our objective is to learn how to design digital circuits. These circuits use binary systems. Signals in such binary systems may represent only one of 2 possible values

More information

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept.

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept. hapter 2: Princess Sumaya Univ. omputer Engineering Dept. Basic Definitions Binary Operators AND z = x y = x y z=1 if x=1 AND y=1 OR z = x + y z=1 if x=1 OR y=1 NOT z = x = x z=1 if x=0 Boolean Algebra

More information

EC-121 Digital Logic Design

EC-121 Digital Logic Design EC-121 Digital Logic Design Lecture 2 [Updated on 02-04-18] Boolean Algebra and Logic Gates Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Overview What

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates CSA051 - Digital Systems 數位系統導論 Chapter 2 Boolean Algebra and Logic Gates 吳俊興國立高雄大學資訊工程學系 Chapter 2. Boolean Algebra and Logic Gates 2-1 Basic Definitions 2-2 Axiomatic Definition of Boolean Algebra 2-3

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

BOOLEAN ALGEBRA CLASS XII. Presented By : Dinesh Patel PGT CS KV IIT Powai

BOOLEAN ALGEBRA CLASS XII. Presented By : Dinesh Patel PGT CS KV IIT Powai BOOLEAN ALGEBRA CLASS II Presented By : Dinesh Patel PGT CS KV IIT Powai Introduction Boolean Algebra is a set of rules and regulation which is suitable for Digital Circuits, whose answer is either True

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA 1 Learning Objectives Understand the basic operations and laws of Boolean algebra. Relate these operations and laws to circuits composed of AND gates, OR gates, INVERTERS

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 326, brendan.morris@unlv.edu http://www.ee.unlv.edu/~bmorris/cpe/ CPE: Digital Logic Design I Section 4: Dr. Morris Combinational Logic Design Chapter 2 Chapter

More information

Boolean Algebra and Logic Gates Chapter 2. Topics. Boolean Algebra 9/21/10. EECE 256 Dr. Sidney Fels Steven Oldridge

Boolean Algebra and Logic Gates Chapter 2. Topics. Boolean Algebra 9/21/10. EECE 256 Dr. Sidney Fels Steven Oldridge Boolean Algebra and Logic Gates Chapter 2 EECE 256 Dr. Sidney Fels Steven Oldridge Topics DefiniGons of Boolean Algebra Axioms and Theorems of Boolean Algebra two valued Boolean Algebra Boolean FuncGons

More information

Standard Expression Forms

Standard Expression Forms ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Binary Logic and Gates

Binary Logic and Gates 1 COE 202- Digital Logic Binary Logic and Gates Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Introduction Boolean Algebra Elements of Boolean Algebra (Binary Logic) Logic Operations & Logic

More information

If f = ABC + ABC + A B C then f = AB C + A BC + AB C + A BC + A B C

If f = ABC + ABC + A B C then f = AB C + A BC + AB C + A BC + A B C Examples: If f 5 = AB + AB then f 5 = A B + A B = f 10 If f = ABC + ABC + A B C then f = AB C + A BC + AB C + A BC + A B C In terms of a truth table, if f is the sum (OR) of all the minterms with a 1 in

More information

Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

More information

Chapter 3. Boolean Algebra. (continued)

Chapter 3. Boolean Algebra. (continued) Chapter 3. Boolean Algebra (continued) Algebraic structure consisting of: set of elements B binary operations {+, -} unary operation {'} Boolean Algebra such that the following axioms hold:. B contains

More information

Combinational Logic Circuits Part II -Theoretical Foundations

Combinational Logic Circuits Part II -Theoretical Foundations Combinational Logic Circuits Part II -Theoretical Foundations Overview Boolean Algebra Basic Logic Operations Basic Identities Basic Principles, Properties, and Theorems Boolean Function and Representations

More information

Solutions to Assignment No 5 Digital Techniques Fall 2007

Solutions to Assignment No 5 Digital Techniques Fall 2007 Solutions to Assignment No 5 Digital Techniques Fall 2007 André Deutz October 19, 2007 1 Simplifying and Manipulating Boolean Expressions 1. Simplification (a) Simplify each of the following expressions,

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004 EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系 September 2004 Boolean Algebra (formulated by E.V. Huntington, 1904) A set of elements B={0,1} and two binary operators + and Huntington postulates 1. Closure

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

Slides for Lecture 10

Slides for Lecture 10 Slides for Lecture 10 ENEL 353: Digital Circuits Fall 2013 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 30 September, 2013 ENEL 353

More information

BOOLEAN ALGEBRA. Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra

BOOLEAN ALGEBRA. Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra BOOLEAN ALGEBRA Introduction 1854: Logical algebra was published by George Boole known today as Boolean Algebra It s a convenient way and systematic way of expressing and analyzing the operation of logic

More information

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits)

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) September 5, 2002 John Wawrzynek Fall 2002 EECS150 Lec4-bool1 Page 1, 9/5 9am Outline Review of

More information

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) January 30, 2003 John Wawrzynek Outline Review of three representations for combinational logic:

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

CSE 140: Components and Design Techniques for Digital Systems

CSE 140: Components and Design Techniques for Digital Systems Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean Algebra

More information

Logic Gate Level. Part 2

Logic Gate Level. Part 2 Logic Gate Level Part 2 Constructing Boolean expression from First method: write nonparenthesized OR of ANDs Each AND is a 1 in the result column of the truth table Works best for table with relatively

More information