ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2

Size: px
Start display at page:

Download "ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2"

Transcription

1 ECE-7: Digital Logic Design Winter 8 Notes - Unit OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS BASIC TECHNIQUES: We can alas minimie logic unctions using the Boolean theorems. Hoever, more poerul methods such as Karnaugh maps and Quine-McCluske algorithm eist: the provide a deterministic a to check that the minimal orm o a Boolean unction has been reached. KARNAUGH MAPS: variables: m m m m m m 3 m m 3 = ' + ' = m +m = ' + 3 variables: m m m m 3 m 4 m 5 m 6 m 7 m m m 6 m 4 m m 3 m 7 m 5 = '' + '' + = ' + ' = ' + ' Instructor: Daniel Llamocca

2 ECE-7: Digital Logic Design Winter 8 4 variables: m m m m 3 m 4 m 5 m 6 m 7 m 8 m 9 m m m m 3 m 4 m 5 m m 4 m m 5 m 3 m 7 m m 6 m m 3 m 8 m 9 m 5 m m 4 m = ''' + ' + '' = '' + = ' + ' Don t care outputs X X X = ' This method appears in: The Map Method or Snthesis o Combinational Logic Circuits, Maurice Karnaugh, Transactions o the AIEE, Part I: Communication and Electronics, vol. 7, no. 5, Nov. 953, pp Karnaugh maps o 5, 6, 7, 8, and 9 are hinted at. Beond 9 variables, the mental gmnastics or minimiation become ormidable. The Quine-McCluske algorithm provides a simpler approach hen dealing ith a relativel large number o variables. = ' Instructor: Daniel Llamocca

3 ECE-7: Digital Logic Design Winter 8 QUINE-MCCLUSKEY ALGORITHM This method appears in: Minimiation o Boolean Functions, E. J. McCluske, Jr., The Bell Sstem Technical Journal, vol. 35, no. 6, Nov. 956, pp Literal: For an n variable unction F, it is a variable epressed as X or X. Implicant: For an n variable unction, it is an product term that can appear in an possible sum o products (canonical or non-canonical) that represents the unction. I P is an implicant, then P = implies that the unction is. Thus, ever minterm is an implicant. A graphical a to see the o a unction is to take a look at the Karnaugh map (or a relativel lo number o variables). All the possible terms e can get out o the K-map are. implicant: It is an implicant P such that the removal o an literal rom P results in non-implicant o the unction. OUTLINE. Get the unction to be minimied represented as a canonical Sum o Products: Use the minterm epansion orm. F(A, B, C, D) = m(,,,5,6,7,8,9,,4). Get the Implicants o the unction: This is done b sstematicall appling XY + XY = X to all possible minterms and resulting non-canonical product terms. So, e build the Implicants Table b determining all Implicants: We represent the minterms using the binar notation. For eample: m = A B C D =. Then, e group the minterms b the number o ones the contain. For an n variable unction, the minterms have n literals. We appl XY + XY = X to all possible pairs o minterms. This applies to pair o minterms that onl var b one literal. We attach a to ever minterm that as emploed. m, = m + m = A B C D + A B C D = A B C Note the table representation: m, = m + m = + =. The smbol " " indicates that a literal as simpliied. The resulting column consists o terms ith n literals. We keep appling XY + XY = X to all possible pair o resulting product terms. We attach a to ever term that as emploed. For each column e add, an etra literal is simpliied (or a smbol " " is added to the terms). m,,8,9 = m, + m 8.9 = A B C + AB C = B C + = I e happen to get a repeated term, e eliminate one: m,,8,9 = m,8,,9 =, m,8,,9 is eliminated When e cannot simpli an urther, e stop and look or the terms that do not have a check. These terms are called the Implicants. All the terms that appear in the table are the Implicants. Number o ones 4-literal m = 3 4 m = m = m 8 = m 5 = m 6 = m 9 = m = m 7 = m 4= 3-literal m, = - m, = - m,8 = - m,5 = - m,9 = - m,6 = - m 8,9 = - m 8, = - m, = - m 5,7 = - m 6,7 = - m 6,4 = - m,4 = - -literal m,,8,9 = -- m,,8, = -- m,8,,9 = -- m,6,,4 = -- m,,6,4 = -- -literal an urther, so e stop here F(A, B, C, D) = A C D + A BD + A BC + B C + B D + CD 3. Select a minimum set o Implicants: F is the sum o this set that contains the minimum number o literals. Build the Implicant Chart. Mark the minterms that cover each single Implicant ith an X. Get the Essential Implicants: Look or minterms that are covered b (are part o) a single Implicant: this is, look or columns ith one X. The corresponding Implicants are the Essential Implicants. The minimied F includes the Essential Implicants. Thus, e must eliminate the minterms that are part o an Essential Implicant out o the other Implicants: cross out the ros o the Essential Implicants and the columns o the covered minterms. In the eample, the Essential Implicants are: B C, CD For the remaining X s: select enough Implicants to cover all the minterms o the unction. This is a trial and error procedure: start b selecting the Implicant that crosses out (ros and columns) most o the Xs, and so on. 3 Instructor: Daniel Llamocca

4 ECE-7: Digital Logic Design Winter 8 Implicants m,,8,9 B C X X X X m,,8, B D X X X X m,6,,4 CD X X X X m,5 A C D X X m 5,7 A BD X X m 6,7 A BC X X F(A, B, C, D) = B C + CD + A BD EXAMPLE: F(A, B, C, D) = m(4,8,,,,5) + d(9,4). Function ith don t care terms. Implicants Table: To help simpliing the unction, the don t care terms are included as minterms here. I a don t care term ends up being a Implicant, e delete it (otherise e are not taking advantage o the don t care terms). Number o ones 4-literal m 4 = m 8 = m 9 = m = m = m 3 = m 4= 4 m 5= 3-literal m 4, = - m 8,9 = - m 8, = - m 8, = - m 9, = - m, = - m,4 = - m,4 = - m,5 = - m 4,5 = - -literal m 8,9,, = -- m 8,,9, = -- m 8,,,4 = -- m 8,,,4 = -- m,,4,5 = -- m,4,,5 = -- -literal an urther, so e stop here F(A, B, C, D) = BC D + AB + AD + AC Implicant Chart: The don t care terms are NOT included here. Onl the minterms are included here, since e are tring to have as e X s as possible. Implicants m 4, BC D X X m 8,9,, AB X X X m 8,,,4 AD X X X m,,4,5 AC X X X More than one minimal solution eist, depending on the X (in the same pink column) that e use: F(A, B, C, D) = BC D + AC + AB Or: F(A, B, C, D) = BC D + AC + AD EXAMPLE: F(A, B, C) = m(,,,5,6,7) Implicants Table: Number 3-literal o ones m = m = m = m 5 = m 6 = 3 m 7 = -literal m, = - m, = - m,5 = - m,6 = - m 5,7 = - m 6,7 = - -literal an urther, so e stop here F(A, B, C) = A B + A C + B C + BC + AC + AB 4 Instructor: Daniel Llamocca

5 ECE-7: Digital Logic Design Winter 8 Implicant Chart: Implicants m, A B X X m, A C X X m,5 B C X X m,6 BC X X m 5,7 AC X X m 6,7 AB X X No essential prime. So, e can onl select the minimum number o Implicants (i.e., crossing out ros and columns) that covers all the minterms. The eample above shos a group o Implicants hose number o elements is the minimum (3). For this particular group, there is onl one minimal solution (recall that there can be more than one minimal solution or the same group o Implicants): F(A, B, C) = A B + BC + AC There can be more than one group o Implicants hose number o elements is the minimum (3 in this eample), as e can pick an X in a column to mark our Implicants. The eample belo shos the onl other possible minimum group o Implicants: Implicants m, A B X X m, A C X X m,5 B C X X m,6 BC X X m 5,7 AC X X m 6,7 AB X X For this particular group o Implicants, there is onl one minimal solution: F(A, B, C) = A C + B C + AB EXAMPLE: F(A, B, C, D) = m(,,3,5,6,7,8,9) + d(,,,3,4,5). There are too man minterms. This ill make the process cumbersome. Instead, it might be better to optimie: F (A, B, C, D) = m(,4) + d(,,,3,4,5) Once e get the optimied orm o F, e complement it in order to get F. Implicants Table (F ) : Number o ones 4-literal m = m 4 = m = m = m = 3 m 3= m 4= 4 m 5= 3-literal m 4, = - m, = - m,4 = - m,3 = - m,4 = - m,5 = - m 3,5 = - m 4,5 = - -literal m,,4,5 = -- m,4,,5 = -- m,3,4,5 = -- m,4,3,5 = -- -literal an urther, so e stop here F (A, B, C, D) = A B C D + BC D + AC + AB 5 Instructor: Daniel Llamocca

6 ECE-7: Digital Logic Design Winter 8 Implicant Chart (F ): The don t care terms are NOT included. Implicants 4 m A B C D X m 4, BC D X m,,4,5 m,3,4,5 AC AB F (A, B, C, D) = A B C D + BC D F(A, B, C, D) = (A + B + C + D )(B + C + D) Note that i e appl Quine-McCluske to F, e might not get eactl the same Boolean unction F(A, B, C, D) = (A + B + C + D )(B + C + D). This is because the don t care terms are assigned and dierentl or F and F. Note that the truth table ill be the same; the don t care terms ill not be necessaril assigned the same values in each case though. ISSUES: To determine a minimal solution (i.e. solution ith the same number o literals), e need to eicientl cross out ros and columns. We can do this b trial and error, but it can become a cumbersome procedure as the number o variables increase. And as illustrated in the eamples, there can be more than one a to eicientl cross out ros and columns. There can also be more than one minimal solution (even i there is onl one a to eicientl cross out ros and columns) resulting rom this method. We can determine all possible minimal solutions b inspection, but this can become cumbersome as the number o variables increase. A sstematic a to determine all possible minimum solutions is provided b Petrick s method: given a prime implicant chart, e can determine all minimum sum-o-products solutions. This is out o the scope o this course. 6 Instructor: Daniel Llamocca

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

Unit 6. Quine-McClusky Method. Unit 6 1

Unit 6. Quine-McClusky Method. Unit 6 1 Unit 6 Quine-McClusky Method Unit 6 1 Outline Determination of prime implicants The prime implicant chart Petrick s method Simplification of incompletely specified functions Unit 6 2 Overview (1/2) A systematic

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents B-1 Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix B: Reduction of Digital Logic B-2 Chapter Contents B.1 Reduction of Combinational Logic and Sequential Logic B.2 Reduction

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Exact and heuristic minimization of Boolean functions

Exact and heuristic minimization of Boolean functions Eact and heuristic minimization of Boolean functions Quine a McCluskey Method a) Generation of all prime implicants b) Selection of a minimum subset of prime implicants, which will represent the original

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active

More information

Minimierung. Wintersemester 2018/19. Folien basierend auf Material von F. Vahid und S. Werner Vorlesender: Dr. Ing.

Minimierung. Wintersemester 2018/19. Folien basierend auf Material von F. Vahid und S. Werner Vorlesender: Dr. Ing. Minimierung Grundlagen der technischen Informatik Wintersemester 28/9 Folien basierend auf Material von F. Vahid und S. Werner Wintersemester 28/9 Review - Boolean Algebra Properties Commutative (Kommutativgesetz)

More information

Karnaugh Maps (K-Maps)

Karnaugh Maps (K-Maps) Karnaugh Maps (K-Maps) Boolean expressions can be minimized by combining terms P + P = P K-maps minimize equations graphically Put terms to combine close to one another B C C B B C BC BC BC BC BC BC BC

More information

CSE 140: Components and Design Techniques for Digital Systems

CSE 140: Components and Design Techniques for Digital Systems Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean Algebra

More information

Chapter 2 Combinational

Chapter 2 Combinational Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations HOANG Trang Reference: 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean

More information

Lecture 4: Four Input K-Maps

Lecture 4: Four Input K-Maps Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems Fall 24 CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean

More information

WEEK 3.1 MORE ON KARNAUGH MAPS

WEEK 3.1 MORE ON KARNAUGH MAPS WEEK 3. MORE ON KARNAUGH MAPS Don t Cares Sometimes, we might have inputs and it doesn t matter what the output is; i.e., we don t care what the output is. These situations are called don t cares. Rather

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

CS/EE 181a 2008/09 Lecture 4

CS/EE 181a 2008/09 Lecture 4 CS/EE 181a 28/9 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Chapter 2. Digital Logic Basics

Chapter 2. Digital Logic Basics Chapter 2 Digital Logic Basics 1 2 Chapter 2 2 1 Implementation using NND gates: We can write the XOR logical expression B + B using double negation as B+ B = B+B = B B From this logical expression, we

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Logical Design of Digital Systems

Logical Design of Digital Systems Lecture 4 Table of Content 1. Combinational circuit design 2. Elementary combinatorial circuits for data transmission 3. Memory structures 4. Programmable logic devices 5. Algorithmic minimization approaches

More information

CMSC 313 Preview Slides

CMSC 313 Preview Slides CMSC 33 Preview Slies These are raft slies. The actual slies presente in lecture may be ifferent ue to last minute changes, scheule slippage,... UMBC, CMSC33, Richar Chang CMSC 33 Lecture

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

Textbook: Digital Design, 3 rd. Edition M. Morris Mano

Textbook: Digital Design, 3 rd. Edition M. Morris Mano : 25/5/ P-/70 Tetbook: Digital Design, 3 rd. Edition M. Morris Mano Prentice-Hall, Inc. : INSTRUCTOR : CHING-LUNG SU E-mail: kevinsu@yuntech.edu.tw Chapter 3 25/5/ P-2/70 Chapter 3 Gate-Level Minimization

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

Mark Redekopp, All rights reserved. Lecture 4 Slides. Boolean Algebra Logic Functions Canonical Sums/Products

Mark Redekopp, All rights reserved. Lecture 4 Slides. Boolean Algebra Logic Functions Canonical Sums/Products Lecture 4 Slides Boolean Algebra Logic Functions Canonical Sums/Products LOGIC FUNCTION REPRESENTATION Logic Functions A logic function maps input combinations to an output value ( 1 or ) 3 possible representations

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals The Karnaugh Map COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Boolean Function Minimization The Karnaugh Map (K-Map) Two, Three,

More information

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES L4: Karnaugh diagrams, two-, and multi-level minimization Elena Dubrova KTH / ICT / ES dubrova@kth.se Combinatorial system a(t) not(a(t)) A combinatorial system has no memory - its output depends therefore

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Standard Expression Forms

Standard Expression Forms ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

CS/EE 181a 2010/11 Lecture 4

CS/EE 181a 2010/11 Lecture 4 CS/EE 181a 21/11 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture) Email: abk@ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802

More information

Chapter 4 Optimized Implementation of Logic Functions

Chapter 4 Optimized Implementation of Logic Functions Chapter 4 Optimized Implementation of Logic Functions Logic Minimization Karnaugh Maps Systematic Approach for Logic Minimization Minimization of Incompletely Specified Functions Tabular Method for Minimization

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Quine-McCluskey (Tabular) Minimization

Quine-McCluskey (Tabular) Minimization Quine-McCluskey (Tabular) Minimization Two step process utilizing tabular listings to: Identify prime implicants (implicant tables) Identify minimal PI set (cover tables) All work is done in tabular form

More information

Lecture 4: More Boolean Algebra

Lecture 4: More Boolean Algebra Lecture 4: More Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University ENGIN2

More information

Outcomes. Spiral 1 / Unit 3. The Problem SYNTHESIZING LOGIC FUNCTIONS

Outcomes. Spiral 1 / Unit 3. The Problem SYNTHESIZING LOGIC FUNCTIONS -3. -3.2 Outcomes Spiral / Unit 3 Minterm and Materms Canonical Sums and Products 2 and 3 Variable oolean lgebra Theorems emorgan's Theorem unction Snthesis use Canonical Sums/Products Mark Redekopp I

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

7.1. Unit 7. Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra

7.1. Unit 7. Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra 7.1 Unit 7 Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra CHECKERS / DECODERS 7.2 7.3 Gates Gates can have more than 2 inputs

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

Working with Combinational Logic. Design example: 2x2-bit multiplier

Working with Combinational Logic. Design example: 2x2-bit multiplier Working with ombinational Logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and NORs

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

Combinational Logic Circuits Part II -Theoretical Foundations

Combinational Logic Circuits Part II -Theoretical Foundations Combinational Logic Circuits Part II -Theoretical Foundations Overview Boolean Algebra Basic Logic Operations Basic Identities Basic Principles, Properties, and Theorems Boolean Function and Representations

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1 Digital Logic COMP370 Introduction to Computer Architecture Logic Simplification It is frequently possible to simplify a logical expression. This makes it easier to understand and requires fewer gates

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

Two NP-hard Interchangeable Terminal Problems*

Two NP-hard Interchangeable Terminal Problems* o NP-hard Interchangeable erminal Problems* Sartaj Sahni and San-Yuan Wu Universit of Minnesota ABSRAC o subproblems that arise hen routing channels ith interchangeable terminals are shon to be NP-hard

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Electronic Design Automation for Digital Circuits

Electronic Design Automation for Digital Circuits Electronic Design Automation for Digital Circuits Tutorial Notes Lecturer: U. Schlichtmann Teaching Assistant: M. Barke Room 296, T +49 89 289-23644 barke@tum.de Address: Arcisstr. 2 8333 Munich German

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6 DEPARTMENT: ECE QUESTION BANK SUBJECT NAME: DIGITAL ELECTRONICS UNIT I: Boolean Functions and Logic Gates PART -A ( Marks). What are the limitations of

More information

14:332:231 DIGITAL LOGIC DESIGN. Combinational Circuit Synthesis

14:332:231 DIGITAL LOGIC DESIGN. Combinational Circuit Synthesis :: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering all Lecture #: Combinational Circuit Synthesis I Combinational Circuit Synthesis Recall: Combinational circuit

More information

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS 202.0.5. DIGITL TECHNICS I Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: LOGIC SYNTHESIS st year BSc course st (utumn) term 202/203 5. LECTURE. Karnaugh map applications

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Boolean Logic Stephen A. Edwards Columbia University Summer 2017 Boolean Logic George Boole 1815 1864 Boole s Intuition Behind Boolean Logic Variables,,... represent classes

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr.

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr. Course Title: Real Analsis Course Code: MTH3 Course instructor: Dr. Atiq ur Rehman Class: MSc-II Course URL: www.mathcit.org/atiq/fa5-mth3 You don't have to be a mathematician to have a feel for numbers.

More information

Digital Design. Digital Design

Digital Design. Digital Design Principles Of Digital Design Chapter 3 Boolean Algebra and Logic Design Boolean Algebra Logic Gates Digital Design Implementation Technology ASICs Gate Arrays Basic Algebraic Properties A set is a collection

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Combinational Logic Design Using a Truth Table Minterm and Maxterm Expansions General Minterm and

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Boolean Logic Stephen A. Edwards Columbia University Fall 2011 Boolean Logic George Boole 1815 1864 Boole s Intuition Behind Boolean Logic Variables x, y,... represent

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 36

Contents. Chapter 3 Combinational Circuits Page 1 of 36 Chapter 3 Combinational Circuits Page of 36 Contents Combinational Circuits...2 3. Analysis of Combinational Circuits...3 3.. Using a Truth Table...3 3..2 Using a Boolean Function...6 3.2 Synthesis of

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National Universit Prof. Wangrok Oh(CNU) / 5 Overview Aiomatic Definition of Boolean Algebra 2 Basic Theorems

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Boolean Logic Stephen A. Edwards Columbia University Summer 2015 Boolean Logic George Boole 1815 1864 Boole s Intuition Behind Boolean Logic Variables X,,... represent

More information

Binary logic consists of binary variables and logical operations. The variables are

Binary logic consists of binary variables and logical operations. The variables are 1) Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two

More information

Mark Redekopp, All rights reserved. Lecture 5 Slides. Canonical Sums and Products (Minterms and Maxterms) 2-3 Variable Theorems DeMorgan s Theorem

Mark Redekopp, All rights reserved. Lecture 5 Slides. Canonical Sums and Products (Minterms and Maxterms) 2-3 Variable Theorems DeMorgan s Theorem Lecture 5 Slides Canonical Sums and Products (Minterms and Materms) 2-3 Variable Theorems DeMorgan s Theorem Using products of materms to implement a function MAXTERMS Question Is there a set of functions

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 2 Circuit Optimization

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 2 Circuit Optimization Logic and omputer Design Fundamentals hapter 2 ombinational Logic ircuits Part 2 ircuit Optimization harles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

Simlification of Switching Functions

Simlification of Switching Functions Simlification of Switching unctions ( ) = ( 789 5) Quine-Mc luskey Original nonminimized oolean function m i m i m n m i [] m m m m m 4 m 5 m 6 m 7 m 8 m 9 m m m m m 4 m 5 m m m 7 m 8 m 9 m m 5 The number

More information

Boolean Algebra, Gates and Circuits

Boolean Algebra, Gates and Circuits Boolean Algebra, Gates and Circuits Kasper Brink November 21, 2017 (Images taken from Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc.) Outline Last week: Von

More information

Digital Logic Circuits - Switching Algebra - Combinational Circuits -

Digital Logic Circuits - Switching Algebra - Combinational Circuits - Digital Logic Circuits - Switching Algebra - Combinational Circuits - Dr. Voicu Groza SITE Hall, Room 57 562 58 ext. 259 Groza@EECS.uOttawa.ca Outline Logic Functions Boolean Algebra Logic Functions Minimization

More information

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps CMSC 33 Lecture 9 Combinational Logic Components Programmable Logic rrays Karnaugh Maps UMC, CMSC33, Richard Chang Last Time & efore Returned midterm exam Half adders & full adders Ripple

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Building Blocks Lecture 5: Announcements Lab 2 prelab due tomorrow HW due Friday HW 2 to be posted on Thursday Lecture 4 to be replayed

More information

CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego

CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego CSE 140, Lecture 2 Combinational Logic CK Cheng CSE Dept. UC San Diego 1 Combinational Logic Outlines 1. Introduction 1. Scope 2. Review of Boolean lgebra 3. Review: Laws/Theorems and Digital Logic 2.

More information

Lecture 5. Karnaugh-Map

Lecture 5. Karnaugh-Map Lecture 5 - Lecture 5 Karnaugh-Map Lecture 5-2 Karnaugh-Map Set Logic Venn Diagram K-map Lecture 5-3 K-Map for 2 Variables Lecture 5-4 K-Map for 3 Variables C C C Lecture 5-5 Logic Expression, Truth Table,

More information