Mixed effects and Group Modeling for fmri data

Size: px
Start display at page:

Download "Mixed effects and Group Modeling for fmri data"

Transcription

1 Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19,

2 Outline Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling Data exploration Conclusions 2

3 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2) SPM8 Nonsphericity Modelling Data exploration Conclusions 3

4 Lexicon Hierarchical Models Mixed Effects Models Random Effects (RFX) Models Components of Variance... all the same... all alluding to multiple sources of variation (in contrast to fixed effects) 4

5 Random Effects 3 Ss, 5 replicated RT s Illustration Standard linear model assumes only one source of iid random variation Consider this RT data Here, two sources Within subject var. Between subject var. Causes dependence in ε Residuals 5

6 Fixed vs. Random Effects in fmri Distribution of each subject s estimated effect Subj. 1 σ 2 FFX Fixed Effects Intra-subject variation suggests all these subjects different from zero Random Effects Intersubject variation suggests population not very different from zero Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Distribution of population effect 0 σ 2 RFX 6

7 Fixed Effects Only variation (over sessions) is measurement error True Response magnitude is fixed 7

8 Random/Mixed Effects Two sources of variation Measurement error Response magnitude Response magnitude is random Each subject/session has random magnitude 8

9 Random/Mixed Effects Two sources of variation Measurement error Response magnitude Response magnitude is random Each subject/session has random magnitude But note, population mean magnitude is fixed 9

10 Fixed vs. Random Fixed isn t wrong, just usually isn t of interest Fixed Effects Inference I can see this effect in this cohort Random Effects Inference If I were to sample a new cohort from the population I would get the same result 10

11 Two Different Fixed Effects Approaches Grand GLM approach Model all subjects at once Good: Mondo DF Good: Can simplify modeling Bad: Assumes common variance over subjects at each voxel Bad: Huge amount of data 11

12 Two Different Fixed Effects Approaches Meta Analysis approach Model each subject individually Combine set of T statistics mean(t) n ~ N(0,1) sum(-logp) ~ χ 2 n Good: Doesn t assume common variance Bad: Not implemented in software Hard to interrogate statistic maps 12

13 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2) SPM8 Nonsphericity Modelling Data exploration Conclusions 13

14 Assessing RFX Models Issues to Consider Assumptions & Limitations What must I assume? Independence? Nonsphericity? (aka independence + homogeneous var.) When can I use it Efficiency & Power How sensitive is it? Validity & Robustness Can I trust the P-values? Are the standard errors correct? If assumptions off, things still OK? 14

15 Issues: Assumptions Distributional Assumptions Gaussian? Nonparametric? Homogeneous Variance Over subjects? Over conditions? Independence Across subjects? Across conditions/repeated measures Note: Nonsphericity = (Heterogeneous Var) or (Dependence) 15

16 Issues: Soft Assumptions Regularization Regularization Weakened homogeneity assumption Usually variance/autocorrelation regularized over space Examples fmristat - local pooling (smoothing) of (σ 2 RFX )/(σ2 FFX ) SnPM - local pooling (smoothing) of σ 2 RFX FSL - Bayesian (noninformative) prior on σ 2 RFX SPM global pooling (averaging) of σ MFX i,j 16

17 Issues: Efficiency & Power Efficiency: 1/(Estmator Variance) Goes up with n Power: Chance of detecting effect Goes up with n Also goes up with degrees of freedom (DF) DF accounts for uncertainty in estimate of σ 2 RFX Usually DF and n yoked, e.g. DF = n-p 17

18 Issues: Validity Are P-values accurate? I reject my null when P < 0.05 Is my risk of false positives controlled at 5%? Exact control FPR = α Valid control (possibly conservative) FPR α Problems when Standard Errors inaccurate Degrees of freedom inaccurate 18

19 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling Data exploration Conclusions 19

20 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling Data exploration Conclusions 20

21 Holmes & Friston Unweighted summary statistic approach 1- or 2-sample t test on contrast images Intrasubject variance images not used (c.f. FSL) Proceedure Fit GLM for each subject i Compute cb i, contrast estimate Analyze {cb i } i 21

22 Holmes & Friston motivation... Fixed effects... estimated mean activation image ^ α 1 ^ σ 2 ε ^ α 2 ^ σ 2 ε ^ α 3 ^ σ 2 ε ^ α 4 ^ σ 2 ε ^ α 5 ^ σ 2 ε ^ α 6 ^ σ 2 ε α ^ c.f. σ 2 ε / nw c.f. n subjects w error DF...powerful but wrong inference p < (uncorrected) SPM{t} p < 0.05 (corrected) SPM{t} 22

23 Holmes & Friston level-one (within-subject) ^ α 1 ^ σ 2 ε ^ α 2 ^ σ 2 ε ^ α 3 ^ σ 2 ε ^ α 4 ^ σ 2 ε ^ α 5 ^ σ 2 ε Random Effects level-two (between-subject) variance ^ σ 2 α ^ c.f. σ 2 /n = σ 2 α /n + σ2 ε / nw c.f. an estimate of the mixed-effects model variance σ 2 α + σ2 ε / w (no voxels significant at p < 0.05 (corrected)) p < (uncorrected) ^ α 6 ^ σ 2 ε timecourses at [ 03, -78, 00 ] contrast images SPM{t} 23

24 Distribution Holmes & Friston Assumptions Normality Independent subjects Homogeneous Variance Intrasubject variance homogeneous σ 2 FFX same for all subjects Balanced designs 24

25 Holmes & Friston Limitations Limitations Only single image per subject If 2 or more conditions, Must run separate model for each contrast Limitation a strength! No sphericity assumption made on different conditions when each is fit with separate model 25

26 Holmes & Friston Efficiency If assumptions true Optimal, fully efficient If σ 2 FFX differs between subjects Reduced efficiency Here, optimal requires down-weighting the 3 highly variable subjects 0 26

27 Holmes & Friston Validity If assumptions true Exact P-values If σ 2 FFX differs btw subj. Standard errors not OK Est. of σ 2 RFX biased DF not OK may be Here, 3 Ss dominate DF < 5 = σ 2 RFX 27

28 Holmes & Friston In practice, Validity & Efficiency are excellent For one sample case, HF almost impossible to break False Positive Rate Robustness Power Relative to Optimal (outlier severity) (outlier severity) Mumford & Nichols. Simple group fmri modeling and inference. Neuroimage, 47(4): , sample & correlation might give trouble Dramatic imbalance or heteroscedasticity 28

29 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling Data exploration Conclusions 29

30 SPM8 Nonsphericity 1 effect per subject Modelling Uses Holmes & Friston approach >1 effect per subject Can t use HF; must use SPM8 Nonsphericity Modelling Variance basis function approach used... 30

31 SPM8 Notation: iid case y = X θ + ε N 1 N p p 1 N 1 X 12 subjects, 4 conditions Use F-test to find differences btw conditions Standard Assumptions Identical distn Independence Sphericity... but here not realistic! Cor(ε) = λ I N Error covariance N 31

32 Multiple Variance Components y = X θ + ε N 1 N p p 1 N 1 12 subjects, 4 conditions Measurements btw subjects uncorrelated Measurements w/in subjects correlated Errors can now have different variances and there can be correlations N Cor(ε) =Σ k λ k Q k Error covariance N Allows for nonsphericity 32

33 Non-Sphericity Modeling Errors are independent but not identical Eg. Two Sample T Two basis elements Q k s: Error Covariance 33

34 Non-Sphericity Modeling Errors are not independent and not identical Error Covariance Q k s: 34

35 SPM8 Nonsphericity Modelling Assumptions & Limitations Cor(ε) =Σ k λ k Q k assumed to globally homogeneous λ k s only estimated from voxels with large F Most realistically, Cor(ε) spatially heterogeneous Intrasubject variance assumed homogeneous 35

36 SPM8 Nonsphericity Efficiency & Power Modelling If assumptions true, fully efficient Validity & Robustness P-values could be wrong (over or under) if local Cor(ε) very different from globally assumed Stronger assumptions than Holmes & Friston 36

37 Overview Mixed effects motivation Evaluating mixed effects methods Two Three methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling FSL Data exploration Conclusions 37

38 FSL3: Full Mixed Effects Model First-level, combines sessions Second-level, combines subjects Third-level, combines/compares groups 38

39 FSL3: Summary Statistics 39

40 Summary Stats Equivalence Crucially, summary stats here are not just estimated effects. Summary Stats needed for equivalence: Beckman et al., 2003

41 Case Study: FSL3 s FLAME Uses summary-stats model equivalent to full Mixed Effects model Doesn t assume intrasubject variance is homogeneous Designs can be unbalanced Subjects measurement error can vary 41

42 Case Study: FSL3 s FLAME Bayesian Estimation Priors, priors, priors Uses reference prior Final inference on posterior of β β y has Multivariate T dist n (MVT) but with unknown dof 42

43 Approximating MVTs FAST Gaussian Estimate dof? MVT Model MCMC BIDET Samples SLOW BIDET = Bayesian Inference with Distribution Estimation using T

44 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling Data exploration Conclusions 44

45 Data: FIAC Data Acquisition 3 TE Bruker Magnet For each subject: 2 (block design) sessions, 195 EPI images each TR=2.5s, TE=35ms, volumes, 3 3 4mm vx. Experiment (Block Design only) Passive sentence listening 2 2 Factorial Design Sentence Effect: Same sentence repeated vs different Speaker Effect: Same speaker vs. different Analysis Slice time correction, motion correction, sptl. norm mm FWHM Gaussian smoothing Box-car convolved w/ canonical HRF Drift fit with DCT, 1/128Hz

46 Look at the Data! With small n, really can do it! Start with anatomical Alignment OK? Yup Any horrible anatomical anomalies? Nope

47 Look at the Data! Mean & Standard Deviation also useful Variance lowest in white matter Highest around ventricles

48 Look at the Data! Then the functionals Set same intensity window for all [-10 10] Last 6 subjects good Some variability in occipital cortex

49 Feel the Void! Compare functional with anatomical to assess extent of signal voids

50 Overview Mixed effects motivation Evaluating mixed effects methods Two methods Summary statistic approach (HF) (SPM96,99,2,5,8) SPM8 Nonsphericity Modelling FSL3 Conclusions 50

51 Conclusions Random Effects crucial for pop. inference When question reduces to one contrast HF summary statistic approach When question requires multiple contrasts Repeated measures modelling Look at the data! 51

52 52

53 References for four RFX Approaches in fmri Holmes & Friston (HF) Summary Statistic approach (contrasts only) Holmes & Friston (HBM 1998). Generalisability, Random Effects & Population Inference. NI, 7(4 (2/3)):S754, Holmes et al. (SnPM) Permutation inference on summary statistics Nichols & Holmes (2001). Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. HBM, 15;1-25. Holmes, Blair, Watson & Ford (1996). Nonparametric Analysis of Statistic Images from Functional Mapping Experiments. JCBFM, 16:7-22. Friston et al. (SPM8 Nonsphericity Modelling) Empirical Bayesian approach Friston et al. Classical and Bayesian inference in neuroimaging: theory. NI 16(2): , 2002 Friston et al. Classical and Bayesian inference in neuroimaging: variance component estimation in fmri. NI: 16(2): , Beckmann et al. & Woolrich et al. (FSL3) Summary Statistics (contrast estimates and variance) Beckmann, Jenkinson & Smith. General Multilevel linear modeling for group analysis in fmri. NI 20 (2): (2003) Woolrich, Behrens et al. Multilevel linear modeling for fmri group analysis using Bayesian inference. NI 21: (2004) 53

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

Analysis of longitudinal imaging data. & Sandwich Estimator standard errors

Analysis of longitudinal imaging data. & Sandwich Estimator standard errors with OLS & Sandwich Estimator standard errors GSK / University of Liège / University of Warwick FMRIB Centre - 07 Mar 2012 Supervisors: Thomas Nichols (Warwick University) and Christophe Phillips (Liège

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

Multilevel linear modelling for FMRI group analysis using Bayesian inference

Multilevel linear modelling for FMRI group analysis using Bayesian inference www.elsevier.com/locate/ynimg NeuroImage 1 (004) 173 1747 Multilevel linear modelling for FMRI group analysis using Bayesian inference Mark W. Woolrich, a,b, *,1 Timothy E.J. Behrens, a,b,1 Christian F.

More information

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Bryan Guillaume Reading workshop lifespan neurobiology 27 June 2014 Supervisors: Thomas Nichols (Warwick University)

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Mixed-effects and fmri studies

Mixed-effects and fmri studies Mixed-effects and fmri studies Technical Note www.elsevier.com/locate/ynimg NeuroImage 24 (2005) 244 252 K.J. Friston, a K.E. Stephan, a, * T.E. Lund, b A. Morcom, c and S. Kiebel a a The Wellcome Department

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Hierarchical Models. W.D. Penny and K.J. Friston. Wellcome Department of Imaging Neuroscience, University College London.

Hierarchical Models. W.D. Penny and K.J. Friston. Wellcome Department of Imaging Neuroscience, University College London. Hierarchical Models W.D. Penny and K.J. Friston Wellcome Department of Imaging Neuroscience, University College London. February 28, 2003 1 Introduction Hierarchical models are central to many current

More information

Detecting fmri activation allowing for unknown latency of the hemodynamic response

Detecting fmri activation allowing for unknown latency of the hemodynamic response Detecting fmri activation allowing for unknown latency of the hemodynamic response K.J. Worsley McGill University J.E. Taylor Stanford University January 7, 006 Abstract Several authors have suggested

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Reproducibility and Power

Reproducibility and Power Reproducibility and Power Thomas Nichols Department of Sta;s;cs & WMG University of Warwick Reproducible Neuroimaging Educa;onal Course OHBM 2015 slides & posters @ http://warwick.ac.uk/tenichols/ohbm

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 An Introduction to Multilevel Models PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 Today s Class Concepts in Longitudinal Modeling Between-Person vs. +Within-Person

More information

Introduction to Within-Person Analysis and RM ANOVA

Introduction to Within-Person Analysis and RM ANOVA Introduction to Within-Person Analysis and RM ANOVA Today s Class: From between-person to within-person ANOVAs for longitudinal data Variance model comparisons using 2 LL CLP 944: Lecture 3 1 The Two Sides

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs Event-related fmri Rik Henson With thanks to: Karl Friston, Oliver Josephs Overview 1. BOLD impulse response 2. General Linear Model 3. Temporal Basis Functions 4. Timing Issues 5. Design Optimisation

More information

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design 心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心 fmri 教育講習課程 I Hands-on (2 nd level) Group Analysis to Factorial Design 黃從仁助理教授臺灣大學心理學系 trhuang@ntu.edu.tw Analysis So+ware h"ps://goo.gl/ctvqce Where are we? Where are

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Chap The McGraw-Hill Companies, Inc. All rights reserved.

Chap The McGraw-Hill Companies, Inc. All rights reserved. 11 pter11 Chap Analysis of Variance Overview of ANOVA Multiple Comparisons Tests for Homogeneity of Variances Two-Factor ANOVA Without Replication General Linear Model Experimental Design: An Overview

More information

ROI analysis of pharmafmri data: an adaptive approach for global testing

ROI analysis of pharmafmri data: an adaptive approach for global testing ROI analysis of pharmafmri data: an adaptive approach for global testing Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Abstract Pharmacological fmri (pharmafmri) is a new highly

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Optimization of Designs for fmri

Optimization of Designs for fmri Optimization of Designs for fmri UCLA Advanced Neuroimaging Summer School August 2, 2007 Thomas Liu, Ph.D. UCSD Center for Functional MRI Why optimize? Scans are expensive. Subjects can be difficult to

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression)

8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression) psyc3010 lecture 7 analysis of covariance (ANCOVA) last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression) 1 announcements quiz 2 correlation and

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 49 Outline 1 How to check assumptions 2 / 49 Assumption Linearity: scatter plot, residual plot Randomness: Run test, Durbin-Watson test when the data can

More information

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Jeffrey S. Morris University of Texas, MD Anderson Cancer Center Joint wor with Marina Vannucci, Philip J. Brown,

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Advanced Experimental Design

Advanced Experimental Design Advanced Experimental Design Topic 8 Chapter : Repeated Measures Analysis of Variance Overview Basic idea, different forms of repeated measures Partialling out between subjects effects Simple repeated

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

EM Waves in Media. What happens when an EM wave travels through our model material?

EM Waves in Media. What happens when an EM wave travels through our model material? EM Waves in Media We can model a material as made of atoms which have a charged electron bound to a nucleus by a spring. We model the nuclei as being fixed to a grid (because they are heavy, they don t

More information

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables.

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables. One-Way Analysis of Variance With regression, we related two quantitative, typically continuous variables. Often we wish to relate a quantitative response variable with a qualitative (or simply discrete)

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

Model-free Functional Data Analysis

Model-free Functional Data Analysis Model-free Functional Data Analysis MELODIC Multivariate Exploratory Linear Optimised Decomposition into Independent Components decomposes data into a set of statistically independent spatial component

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

Linear Regression Models

Linear Regression Models Linear Regression Models Model Description and Model Parameters Modelling is a central theme in these notes. The idea is to develop and continuously improve a library of predictive models for hazards,

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

CE3502. Environmental Measurements, Monitoring & Data Analysis. ANOVA: Analysis of. T-tests: Excel options

CE3502. Environmental Measurements, Monitoring & Data Analysis. ANOVA: Analysis of. T-tests: Excel options CE350. Environmental Measurements, Monitoring & Data Analysis ANOVA: Analysis of Variance T-tests: Excel options Paired t-tests tests (use s diff, ν =n=n x y ); Unpaired, variance equal (use s pool, ν

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Statistical Analysis of Functional ASL Images

Statistical Analysis of Functional ASL Images Statistical Analysis of Functional ASL Images Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Department of Biophysics Department of EE and CS 1 Outline: 1. Control/Label

More information

Checking model assumptions with regression diagnostics

Checking model assumptions with regression diagnostics @graemeleehickey www.glhickey.com graeme.hickey@liverpool.ac.uk Checking model assumptions with regression diagnostics Graeme L. Hickey University of Liverpool Conflicts of interest None Assistant Editor

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 1 Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 2 The Numbers 20 50 5024 9205 8388 500 3 fmri and Mechanism From indirect signals

More information

This Appendix proposes a set of terms and definitions for use in analyses of 1D biomechanical

This Appendix proposes a set of terms and definitions for use in analyses of 1D biomechanical Appendix A Nomenclature This Appendix proposes a set of terms and definitions for use in analyses of D biomechanical continua (Table A.) and relates these terms to analogous, established terms from the

More information

Selected Topics in Statistics for fmri Data Analysis

Selected Topics in Statistics for fmri Data Analysis p. HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Harvard-MIT Division of Health Sciences and Technology Course Instructor: Dr. Mark Vangel. Selected Topics in Statistics

More information

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER MLE Going the Way of the Buggy Whip Used to be gold standard of statistical estimation Minimum variance

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

My data doesn t look like that..

My data doesn t look like that.. Testing assumptions My data doesn t look like that.. We have made a big deal about testing model assumptions each week. Bill Pine Testing assumptions Testing assumptions We have made a big deal about testing

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data Today s Class: Review of concepts in multivariate data Introduction to random intercepts Crossed random effects models

More information

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants.

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants. The idea of ANOVA Reminders: A factor is a variable that can take one of several levels used to differentiate one group from another. An experiment has a one-way, or completely randomized, design if several

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Searchlight-based multi-voxel pattern analysis of fmri by cross-validated MANOVA

Searchlight-based multi-voxel pattern analysis of fmri by cross-validated MANOVA Searchlight-based multi-voxel pattern analysis of fmri by cross-validated MANOVA arxiv:1401.4122v2 [q-bio.nc] 7 Feb 2014 Carsten Allefeldˆ1,2*ˆ; John-Dylan Haynesˆ1 6**ˆ Affiliations: 1. Bernstein Center

More information

General multilevel linear modeling for group analysis in FMRI

General multilevel linear modeling for group analysis in FMRI NeuroImage 0 (003) 105 1063 www.elsevier.com/locate/ynimg General multilevel linear modeling for group analysis in FMRI Christian F. Becmann, a,b, *,1 Mar Jeninson, a,1 and Stephen M. Smith a a Oxford

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

ANCOVA. Lecture 9 Andrew Ainsworth

ANCOVA. Lecture 9 Andrew Ainsworth ANCOVA Lecture 9 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

Making rating curves - the Bayesian approach

Making rating curves - the Bayesian approach Making rating curves - the Bayesian approach Rating curves what is wanted? A best estimate of the relationship between stage and discharge at a given place in a river. The relationship should be on the

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

Empirical Bayes for DCM: A Group Inversion Scheme

Empirical Bayes for DCM: A Group Inversion Scheme METHODS published: 27 November 2015 doi: 10.3389/fnsys.2015.00164 : A Group Inversion Scheme Karl Friston*, Peter Zeidman and Vladimir Litvak The Wellcome Trust Centre for Neuroimaging, University College

More information