Signal Processing for Functional Brain Imaging: General Linear Model (2)

Size: px
Start display at page:

Download "Signal Processing for Functional Brain Imaging: General Linear Model (2)"

Transcription

1 Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE March 5, 2015

2 Overview GLM method (part 1, last week ) intuition of fitting linear models matrix algebra explanation model generation parameter estimation hypothesis testing GLM method (part 2, today ) hypothesis testing continued t-test and F-test multiple comparisons enriching the model accounting for imaging artifacts, physiological noise from single-subject to group-level analysis 2

3 From GLM fitting to hypothesis testing time model get effect size 0.83 ˆ = contrast c T = [1 0 0] get data Null hypothesis H 0 : c T =0 then c T ˆ is asymptotically normal N (0, 2 c T (X T X) 1 c) and t = ˆ c T ˆ pc T (X T X) 1 c follows Student t-distribution with N degrees of freedom L get error effect size t = = 6.42 uncertainty of effect size 3

4 Hypothesis testing: t-test Null hypothesis expresses no effect (i.e., true c T is 0) H 0 : c T =0 q t = c T ˆ/ ˆ 2 c T (X T X) 1 c follows Student t-distribution assuming H 0 reject H 0 if t T, where the -level is the acceptable false positive rate: = P (t 0 T ) (one-sided t-test) p-value indicates the assessment of t assuming H 0 : p = P (t 0 t) specificity: risk of false positives (type I errors) sensitivity: risk of false negatives (type II errors) H0 true H0 false Reject H0 Null hypothesis acceptation/rejection controls specificity only useful as evidence of presence, not evidence of absence (neurosurgeon!) 4

5 F-test - putting the same question... fit model ˆ = = fit reduced model ˆ 0.25 = F = = = 5

6 Hypothesis testing: F-test Partitioning into two blocks of regressors Consider reduced model by design matrix X 0 y = X + e y 0 = X e 0 Null hypothesis H 0 expresses no improvement of X over X 0 F = ê T ê ê 0T ê 0 L L 0 ê T ê N L follows F-distribution (L L 0,N L) assuming H 0 reject H 0 if F T, where the -level is the acceptable false positive rate two-sided test if reduced model removes one regressor 6

7 ... or putting more general questions Use of F-test interested in activation for faces or objects ; some arrogant voxel is activating during faces, deactivating during objects t-contrast: c T = [1 1 0] " F -contrast: C T = # any difference between three conditions (like ANOVA) " # F -contrast: C T =

8 ... or putting more general questions (2) fit model ˆ = F-contrast c T = fit reduced model ˆ = 2.87 F 2,57 =

9 Hypothesis testing: F-test (2) More flexible by contrast matrix reduced model can be made up by linear combinations of regressors avoid reparametrization of model F = ê T ê ê 0T ê 0 L L 0 ê T ê N L = yt My y T Ry N L L = ˆ T X T MXˆ L 0 y T Ry model to remove (specified by C): X c = XC reduced model: X 0 = XC 0 where C 0 = I L contrast matrix) R = I N XX + R 0 = I N X 0 X + 0 M = R 0 R X 0 R 0 y can be computed efficiently N L F (L L 0,N L) L L 0 only needs to be computed once My CC + (residual forming of y Ry X c X 9

10 Multiple comparisons Mass univariate testing (V =10K-100K intracranial voxels) E[FP] = V, so false positives should be controlled adequately! Family-wise error rate: FWE = P ([ V k=1 t0 k T ) Bonferroni correction: assuming independent observations FWE =1 (1 ) V V to obtain FWE, use FWE /V at the individual tests high specificity, low sensitivity since neglecting spatial correlation therefore, too conversative can be applied locally (if ROI is chosen a priori) 10

11 Glance at Gaussian random field theory Consider contrast as lattice representation of continuous Gaussian random field spatially smooth data with 3D Gaussian kernel, typical full-width-at-half-maximum (FWHM) about 6 12 mm Euler characteristic: T =topological measure #blobs #holes Assuming H 0 and high T, we have 1.8mm x 1.8mm FWHM=6mm P ( V k=1 t k >T) = P (max k (t k ) >T) = P (one or more blobs) P ( T 1) (no holes) E[ T ] (one blob) can be further approximated assuming (sufficient) spatial smoothness 11

12 Glance at Gaussian random field theory (2) Advantages: increased sensitivity decreased inter-subject variability (group studies!) Limitations: requires sufficient smoothness: typically FWHM like 3 4 voxel size smoothness needs to be estimated bias if not sufficiently smooth several approximations in cascade (high T ) 12

13 Prof. Keith Worsley

14 5% corrected Bonferroni SPM FWE [VDV et al., IEEE JSTSP, 2008] 14

15 5% corrected Bonferroni SPM FWE [VDV et al., IEEE JSTSP, 2008] 15

16 To correct or not to correct? 16

17 To correct or not to correct? 17

18 To correct or not to correct? 18

19 Remember model specification From stimuli to modeled BOLD response blocks (epochs) h(t; w) = events = Convolution is performed in microtime See exercise 1! 19

20 Enriching the model Hemodynamic variations subject-dependent, regional changes, habituation and anticipation effects approximate h(t + t; w + w), where w is dispersion h(t + t; w + w) h(t; w) + t h t + w h w = More involved techniques using Volterra kernels 20

21 Enriching the model (2) Low-frequency components truncated DCT-basis act like a high-pass filter scanner drifts physiological fluctuations (aliased) intrinsic brain activity Add nuissance regressors realignment parameters spikeregressors to cancel bad scans 21

22 Parameter estimation (revisited) GLM with correlated noise, introduce filter S y = X + e, where e : N (0, 2 V ) Sy = SX + Se {z} e 0, where e 0 : N (0, 2 SV S T ) normal equations: (SX) T Sy =(SX) T (SX) estimate: ˆ =(SX) + Sy assume known covariance matrix V = KK T e.g., parametric form of noise model (1/f-noise, autoregressive model) then BLUE is obtained for S = K 1 Hint: adapt exercise 1 as to incorporate temporal correlation of the noise in the simulation & fitting [Bullmore et al., 1996] 22

23 From single-subject analysis... Analysis of (many) timecourses Time 23

24 ... to group-level analysis Fixed effects analysis concatenate data and design matrices of subjects inference on the observed group Random effects analysis estimate contrast of interest for individual subjects (1st level) enter contrast in basic model and re-estimate (2nd level) inference on the population from which group is sample 24

25 one-sample t-test two-sample t-test paired t-test... to group-level analysis (RFX) Analysis of (many) subjects voxel s intensity One-sample t-test! Subjects... significant? subject See exercise 2! 25

26 Conclusion General linear model many ways of testing the fitted parameters t-test, F-test conceptually simple, yet powerful and flexible many tricks to enrich the model generalizes basic models Multiple comparisons problem Gaussian random field theory is state-of-the-art degrades spatial resolution, improves sensitivity, reduces inter-subject variability Alternatives FP rates (e.g., false discovery rate) Spatial modeling (e.g., wavelets,... ) Bayesian inferences (alternative hypothesis made explicit)... 26

27 Questions you should be able to answer Do you need to refit the data to the reduced model when performing an F-test? Does the GLM require regressors to be orthogonal? What happens in the extreme case when regressors are linearly dependent? Can a standard statistical test (e.g., paired t-test) be expressed with a GLM? What is the design matrix? Explain the difference between a significant group-level effect when performing fixed-effect versus randomeffects analysis? Which one would you prefer in general? Which one would you prefer with very few subjects? (e.g., 3) 27

28 Testing without (m)any assumptions... Parametric testing Assume distribution of statistic under null hypothesis Estimate its parameters Apply threshold according to confidence level Non-parametric testing Use data to find distribution of statistic under null Assumption: Null hypothesis exchangeability 5% Parametric Null Distribution 5% Nonparametric Null Distribution [Adapted from Tom Nichols, 2006] 28

29 Permutation testing Compare contrasts in a 2nd level analysis between 2 groups, 3 subjects in each group group 1: AAA group 2: BBB H0: no difference between groups labels can be exchanged! permutations: 2 6 equivalent labelings compute test statistic (e.g., t-value of GLM contrast) find 95%-percentile of test-statistic distribution or, exceed max of 19 permutations (p-value = 1 / (1+19) = 5%) AAABBB 9.82 ABABAB BAAABB 0.70 BABBAA AABABB 3.24 ABABBA BBBAAA

30 Permutation testing (2) Exchangeability Labels of subjects can be flipped under H0 FMRI scans not due to temporal correlation Becomes within reach today Computational and storage needs! E.g., permutation testing for each voxel Can be extended to deal with multiple comparisons Works usually better than parametric testing More robust against outliers When normal null distribution is less suitable Small number of samples Skewed distribution 30

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Optimization of Designs for fmri

Optimization of Designs for fmri Optimization of Designs for fmri UCLA Advanced Neuroimaging Summer School August 2, 2007 Thomas Liu, Ph.D. UCSD Center for Functional MRI Why optimize? Scans are expensive. Subjects can be difficult to

More information

Detecting fmri activation allowing for unknown latency of the hemodynamic response

Detecting fmri activation allowing for unknown latency of the hemodynamic response Detecting fmri activation allowing for unknown latency of the hemodynamic response K.J. Worsley McGill University J.E. Taylor Stanford University January 7, 006 Abstract Several authors have suggested

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Mixed effects and Group Modeling for fmri data

Mixed effects and Group Modeling for fmri data Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19, 2010 1 Outline Mixed effects

More information

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations 1 Generalised Inverse For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations (X T X)β = X T y (2) If rank of X, denoted

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

Contrasts and Classical Inference

Contrasts and Classical Inference Elsevier UK Chapter: Ch9-P3756 8-7-6 7:p.m. Page:6 Trim:7.5in 9.5in C H A P T E R 9 Contrasts and Classical Inference J. Poline, F. Kherif, C. Pallier and W. Penny INTRODUCTION The general linear model

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

Selected Topics in Statistics for fmri Data Analysis

Selected Topics in Statistics for fmri Data Analysis p. HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Harvard-MIT Division of Health Sciences and Technology Course Instructor: Dr. Mark Vangel. Selected Topics in Statistics

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES BIOL 458 - Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES PART 1: INTRODUCTION TO ANOVA Purpose of ANOVA Analysis of Variance (ANOVA) is an extremely useful statistical method

More information

Peak Detection for Images

Peak Detection for Images Peak Detection for Images Armin Schwartzman Division of Biostatistics, UC San Diego June 016 Overview How can we improve detection power? Use a less conservative error criterion Take advantage of prior

More information

Observed Brain Dynamics

Observed Brain Dynamics Observed Brain Dynamics Partha P. Mitra Hemant Bokil OXTORD UNIVERSITY PRESS 2008 \ PART I Conceptual Background 1 1 Why Study Brain Dynamics? 3 1.1 Why Dynamics? An Active Perspective 3 Vi Qimnü^iQ^Dv.aamics'v

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture16: Population structure and logistic regression I Jason Mezey jgm45@cornell.edu April 11, 2017 (T) 8:40-9:55 Announcements I April

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test la Contents The two sample t-test generalizes into Analysis of Variance. In analysis of variance ANOVA the population consists

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

MATH Notebook 3 Spring 2018

MATH Notebook 3 Spring 2018 MATH448001 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2010 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH448001 Notebook 3 3 3.1 One Way Layout........................................

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Machine learning strategies for fmri analysis

Machine learning strategies for fmri analysis Machine learning strategies for fmri analysis DTU Informatics Technical University of Denmark Co-workers: Morten Mørup, Kristoffer Madsen, Peter Mondrup, Daniel Jacobsen, Stephen Strother,. OUTLINE Do

More information

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de

More information

Contents. Acknowledgments. xix

Contents. Acknowledgments. xix Table of Preface Acknowledgments page xv xix 1 Introduction 1 The Role of the Computer in Data Analysis 1 Statistics: Descriptive and Inferential 2 Variables and Constants 3 The Measurement of Variables

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments The hypothesis testing framework The two-sample t-test Checking assumptions, validity Comparing more that

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 In this chapter we will discuss inference

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Bumpbars: Inference for region detection. Yuval Benjamini, Hebrew University

Bumpbars: Inference for region detection. Yuval Benjamini, Hebrew University Bumpbars: Inference for region detection Yuval Benjamini, Hebrew University yuvalbenj@gmail.com WHOA-PSI-2017 Collaborators Jonathan Taylor Stanford Rafael Irizarry Dana Farber, Harvard Amit Meir U of

More information

ROI ANALYSIS OF PHARMAFMRI DATA:

ROI ANALYSIS OF PHARMAFMRI DATA: ROI ANALYSIS OF PHARMAFMRI DATA: AN ADAPTIVE APPROACH FOR GLOBAL TESTING Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Department of Statistics and Warwick Centre of Analytical Sciences,

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

Chapter 10: Analysis of variance (ANOVA)

Chapter 10: Analysis of variance (ANOVA) Chapter 10: Analysis of variance (ANOVA) ANOVA (Analysis of variance) is a collection of techniques for dealing with more general experiments than the previous one-sample or two-sample tests. We first

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) II Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 1 Compare Means from More Than Two

More information

Interpreting Regression Results

Interpreting Regression Results Interpreting Regression Results Carlo Favero Favero () Interpreting Regression Results 1 / 42 Interpreting Regression Results Interpreting regression results is not a simple exercise. We propose to split

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

ROI analysis of pharmafmri data: an adaptive approach for global testing

ROI analysis of pharmafmri data: an adaptive approach for global testing ROI analysis of pharmafmri data: an adaptive approach for global testing Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Abstract Pharmacological fmri (pharmafmri) is a new highly

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

Chapter 9. Non-Parametric Density Function Estimation

Chapter 9. Non-Parametric Density Function Estimation 9-1 Density Estimation Version 1.2 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Daniel B. Rowe and Steven W. Morgan Division of Biostatistics Medical College of Wisconsin Technical Report

More information

This Appendix proposes a set of terms and definitions for use in analyses of 1D biomechanical

This Appendix proposes a set of terms and definitions for use in analyses of 1D biomechanical Appendix A Nomenclature This Appendix proposes a set of terms and definitions for use in analyses of D biomechanical continua (Table A.) and relates these terms to analogous, established terms from the

More information

STA 101 Final Review

STA 101 Final Review STA 101 Final Review Statistics 101 Thomas Leininger June 24, 2013 Announcements All work (besides projects) should be returned to you and should be entered on Sakai. Office Hour: 2 3pm today (Old Chem

More information

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 28 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University December 3, 2015 1 2 3 4 5 1 Familywise error rates 2 procedure 3 Performance of with multiple

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

Inference. Undercoverage of Wavelet-Based Resampling Confidence Intervals

Inference. Undercoverage of Wavelet-Based Resampling Confidence Intervals Communications in Statistics Simulation and Computation, 37: 1307 1315, 2008 Copyright Taylor & Francis Group, LLC ISSN: 0361-0918 print/1532-4141 online DOI: 10.1080/03610910802050902 Inference Undercoverage

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

NeuroImage. Modeling the hemodynamic response function in fmri: Efficiency, bias and mis-modeling

NeuroImage. Modeling the hemodynamic response function in fmri: Efficiency, bias and mis-modeling NeuroImage 45 (2009) S187 S198 Contents lists available at ScienceDirect NeuroImage journal homepage: www. elsevier. com/ locate/ yni mg Modeling the hemodynamic response function in fmri: Efficiency,

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Statistics Applied to Bioinformatics. Tests of homogeneity

Statistics Applied to Bioinformatics. Tests of homogeneity Statistics Applied to Bioinformatics Tests of homogeneity Two-tailed test of homogeneity Two-tailed test H 0 :m = m Principle of the test Estimate the difference between m and m Compare this estimation

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information