Statistical Inference

Size: px
Start display at page:

Download "Statistical Inference"

Transcription

1 Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter Design matrix Statistical Parametric Map Realignment Smoothing General Linear Model Normalisation Statistical Inference RF Anatomical reference Parameter estimates p <0.05 Voxel-wise time series analysis ime ime Model specification Parameter estimation Hypothesis Statistics single voxel time series BOLD signal SPM

2 Overview -tests Overview -tests he GLM 1 p 1 1 β y = Xβ + ε y = X p + ε Sphericity assumption: Independent and identically distributed (i.i.d.) error terms N N N N: number of scans, p: number of regressors ε ~ N(0, σ 2 I ) he General Linear Model is an equation that expresses the observed response variable in terms of a linear combination of explanatory variables X plus a well behaved error term. Each column of the design matrix corresponds to an effect one has built into the experiment or that may confound the results.

3 Parameter estimation: OLS 2 Find βˆ that minimises y Xβ = ε ε he Ordinary Least Estimates are: ˆ β = ( X X ) 1 Under i.i.d. assumptions, the Ordinary Least Squares estimates are Maximum Likelihood. ε ~ N(0, σ 2 I) Y ~ N( Xβ, σ 2 I) X y ˆ ε ˆ ε ˆ σ 2 = N p ˆ 2 1 β ~ N( β, σ ( X X) ) Overview -tests Hypothesis testing o test an hypothesis, we construct test statistics. he Null Hypothesis H 0 ypically what we want to disprove (no effect). he Alternative Hypothesis H A expresses outcome of interest. he est Statistic he test statistic summarises evidence about H 0. ypically, test statistic is small in magnitude when the hypothesis H 0 is true and large when false. We need to know the distribution of under the null hypothesis. Null Distribution of

4 Significance level and p-value Significance level α: Acceptable false positive rate α. threshold u α hreshold u α controls the false positive rate α = p > u α H ) ( 0 Observation of test statistic t, a realisation of he conclusion about the hypothesis: We reject the null hypothesis in favour of the alternative hypothesis if t > u α P-value: A p-value summarises evidence against H 0. his is the chance of observing value more extreme than t under the null hypothesis. p ( > t H 0) u α α Null Distribution of t P-val Null Distribution of ype I and II errors Neyman-Pearson lemma: the likelihood ratio... ( ) p Y H1 Λ = u p ( Y H0 )...is the most powerful test of size (FPR) ( Λ ) α = p u H 0 Increasing the FPR decreases power ype I error is more serious than type II error We choose to keep the type I error low (5%) Overview -tests

5 Contrasts We are usually not interested in the whole β vector. A contrast selects a specific effect of interest: a contrast c is a vector of length p. c β is a linear combination of regression coefficients β. c = [ ] c β = 1xβ 1 + 0xβ 2 + 0xβ 3 + 0xβ 4 + 0xβ c = [ ] c β = 0xβ xβ 2 + 1xβ 3 + 0xβ 4 + 0xβ Under i.i.d assumptions: ˆ 1 2 c β ~ N( c β, σ c ( X X) c) -test: one dimensional contrasts c = Question: box-car amplitude > 0? = β 1 = c β> 0? β 1 β 2 β 3 β 4 β 5... Null hypothesis: H 0 : c β=0 est statistic: = contrast of estimated parameters variance estimate c ˆ β c ˆ β = = ~ t 2 var( c ˆ) β ˆ σ c c 1 ( X X ) N p -contrast in SPM For a given contrast c: beta_???? images ˆ 1 β = ( X X ) X y ResMS image ˆ ε ˆ ε ˆ σ 2 = N p con_???? image c βˆ spm_???? image SPM{t}

6 1 -test: a simple example Passive word listening versus rest Q: activation during listening? H0: β 1 = X Design matrix c = [ 1 0 ] SPMresults: Height threshold = {p<0.001} voxel-level ( Z ) p uncorrected mm mm mm Inf cluster-level voxel-level Inf p (Z ) -66 corrected k E p uncorrected p FWE-corr p Inf FDR-corr p uncorrected Inf Inf Statistics: p-values adjusted for search volume set-level p c mm mm mm Inf Inf Inf Inf Inf test: a few remarks -test is a signal-to-noise measure (ratio of estimate to standard deviation of estimate). -contrasts are simple combinations of the betas; the - statistic does not depend on the scaling of the regressors or the scaling of the contrast. Unilateral test: H 0 : c β = 0 vs H A : c β > 0 Scaling issue Subject 1 Subject 5 [ ] / 4 [1 1 1 ] / 3 = c ˆ β = var( c ˆ) β 2 ˆ σ c c ˆ β 1 ( X X ) c he -statistic does not depend on the scaling of the regressors. he -statistic does not depend on the scaling of the contrast. Contrast c βˆ depends on scaling. Be careful of the interpretation of the contrasts c βˆ themselves (eg, for a second level analysis): sum average

7 F-test: the extra sum-of-squares principle Model comparison: Full vs. Reduced model? Null Hypothesis H 0 : rue model is X 0 (reduced model) X 0 X 1 X 0 est statistic: ratio of explained variability and unexplained variability (error) Full model? RSS 2 εˆ full RSS 0 ˆreduced ε 2 Or Reduced model? F RSS RSS RSS 0 ESS F RSS ~ F ν 1, ν 2 ν 1 = rank(x) rank(x 0 ) ν 2 = N rank(x) F-test: multidimensional contrats ests multiple linear hypotheses: H 0 : rue model is X 0 H 0 : β 3 = β 4 =... = β 9 = 0 test H 0 : c β = 0? X 0 X 1 (β 3-9 ) X c = SPM{F 6,322 } Full model? Reduced model? F-contrast in SPM beta_???? images ˆ 1 β = ( X X ) X y ResMS image ˆ ε ˆ ε ˆ σ 2 = N p ess_???? images ( RSS 0 - RSS ) spmf_???? images SPM{F}

8 F-test example: movement related effects Multidimensional contrasts hink of it as constructing 3 regressors from the 3 differences and complement this new design matrix such that data can be fitted in the same exact way (same error, same fitted data). F-test: a few remarks F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (nested) model Model comparison. F tests a weighted sum of squares of one or several combinations of the regression coefficients β. In practice, we don t have to explicitly separate X into [X 1 X 2 ] thanks to multidimensional contrasts. Hypotheses: Null Hypothesis H 0 : β1 = β 2 = β 3 = 0 Alternative Hypothesis H : at least one β 0 In testing uni-dimensional contrast with an F-test, for example β 1 β 2, the result will be the same as testing β 2 β 1. It will be exactly the square of the t-test, testing for both positive and negative effects. A k

9 Overview -tests Estimability of a contrast If X is not of full rank then we can have Xβ 1 = Xβ 2 with β 1 β 2 (different parameters). he parameters are not therefore unique, identifiable or estimable. For such models, X X is not invertible so we must resort to generalised inverses (SPM uses the pseudo-inverse). Example: One-way ANOVA (unpaired two-sample t-test) parameters Rank(X)=2 parameter estimability (gray β not uniquely specified) [1 0 0], [0 1 0], [0 0 1] are not estimable. [1 0 1], [0 1 1], [1-1 0], [ ] are estimable. images Factor 1 Factor 2 Mean Overview -tests

10 Design orthogonality For each pair of columns of the design matrix, the orthogonality matrix depicts the magnitude of the cosine of the angle between them, with the range 0 to 1 mapped from white to black. he cosine of the angle between two vectors a and b is obtained by: cos α = a b a b If both vectors have zero mean then the cosine of the angle between the vectors is the same as the correlation between the two variates. Multicollinearity Contrast covariance matrix: 2 1 Var( c ˆ) β =σ c ( X X) c Orthogonal regressors (=uncorrelated): By varying each separately, one can predict the combined effect of varying them jointly. x 2 1 ( X X) is diagonal x 1 x 2 x 1 Non-orthogonal regressors (=correlated): When testing for the first regressor, we are effectively removing the part of the signal that can be accounted for by the second regressor implicit orthogonalisation. x 2 x 2 x 2 x 2 x 1 x = x 2 2 x 1.x 2 x 1 x 1 x 1 x 1 It does not reduce the predictive power or reliability of the model as a whole. Shared variance Orthogonal regressors.

11 Shared variance esting for the green: Correlated regressors, for example: green: subject age yellow: subject score Shared variance esting for the red: Correlated regressors. Shared variance esting for the green: Highly correlated. Entirely correlated non estimable

12 Shared variance esting for the green and yellow If significant, can be G and/or Y Examples A few remarks We implicitly test for an additional effect only, be careful if there is correlation - Orthogonalisation = decorrelation : not generally needed - Parameters and test on the non modified regressor change It is always simpler to have orthogonal regressors and therefore designs. In case of correlation, use F-tests to see the overall significance. here is generally no way to decide to which regressor the «common» part should be attributed to. Original regressors may not matter: it s the contrast you are testing which should be as decorrelated as possible from the rest of the design matrix Overview -tests

13 Design eficiency he aim is to minimize the standard error of a t-contrast (i.e. the denominator of a t-statistic). 2 1 var( c ˆ) β = ˆ σ c ( X X ) c = c ˆ β var( c ˆ) β his is equivalent to maximizing the efficiency e: 2 e( ˆ σ, c, X ) ˆ 2 1 = ( σ c ( X X ) c ) 1 Noise variance Design variance If we assume that the noise variance is independent of the specific design: 1 1 e( c, X ) = ( c ( X X ) c) his is a relative measure: all we can really say is that one design is more efficient than another (for a given contrast). Design efficiency he efficiency of an estimator is a measure of how reliable it is and depends on error variance (the variance not modeled by explanatory variables in the design matrix) and the design variance (a function of the explanatory variables and the contrast tested). X X represents covariance of regressors in design matrix; high covariance increases elements of (X X) -1. High correlation between regressors leads to low sensitivity to each regressor alone. c ( X X ) 1 c c =[1 0]: 5.26 c =[1 1]: 20 c =[1-1]: 1.05 Bibliography Statistical Parametric Mapping: he Analysis of Functional Brain Images. Elsevier, Plane Answers to Complex Questions: he heory of Linear Models. R. Christensen, Springer, Statistical parametric maps in functional imaging: a general linear approach. K.J. Friston et al, Human Brain Mapping, Ambiguous results in functional neuroimaging data analysis due to covariate correlation. A. Andrade et al., NeuroImage, Estimating efficiency a priori: a comparison of blocked and randomized designs. A. Mechelli et al., NeuroImage, With many thanks to G. Flandin, J.-B. Poline and om Nichols for slides.

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design 心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心 fmri 教育講習課程 I Hands-on (2 nd level) Group Analysis to Factorial Design 黃從仁助理教授臺灣大學心理學系 trhuang@ntu.edu.tw Analysis So+ware h"ps://goo.gl/ctvqce Where are we? Where are

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de

More information

Contrasts and Classical Inference

Contrasts and Classical Inference Elsevier UK Chapter: Ch9-P3756 8-7-6 7:p.m. Page:6 Trim:7.5in 9.5in C H A P T E R 9 Contrasts and Classical Inference J. Poline, F. Kherif, C. Pallier and W. Penny INTRODUCTION The general linear model

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Mixed effects and Group Modeling for fmri data

Mixed effects and Group Modeling for fmri data Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19, 2010 1 Outline Mixed effects

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations 1 Generalised Inverse For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations (X T X)β = X T y (2) If rank of X, denoted

More information

1. The OLS Estimator. 1.1 Population model and notation

1. The OLS Estimator. 1.1 Population model and notation 1. The OLS Estimator OLS stands for Ordinary Least Squares. There are 6 assumptions ordinarily made, and the method of fitting a line through data is by least-squares. OLS is a common estimation methodology

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Peak Detection for Images

Peak Detection for Images Peak Detection for Images Armin Schwartzman Division of Biostatistics, UC San Diego June 016 Overview How can we improve detection power? Use a less conservative error criterion Take advantage of prior

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

Interpreting Regression Results

Interpreting Regression Results Interpreting Regression Results Carlo Favero Favero () Interpreting Regression Results 1 / 42 Interpreting Regression Results Interpreting regression results is not a simple exercise. We propose to split

More information

2 Regression Analysis

2 Regression Analysis FORK 1002 Preparatory Course in Statistics: 2 Regression Analysis Genaro Sucarrat (BI) http://www.sucarrat.net/ Contents: 1 Bivariate Correlation Analysis 2 Simple Regression 3 Estimation and Fit 4 T -Test:

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1. Problem 1 (21 points) An economist runs the regression y i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + ε i (1) The results are summarized in the following table: Equation 1. Variable Coefficient Std. Error

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Bryan Guillaume Reading workshop lifespan neurobiology 27 June 2014 Supervisors: Thomas Nichols (Warwick University)

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Optimization of Designs for fmri

Optimization of Designs for fmri Optimization of Designs for fmri UCLA Advanced Neuroimaging Summer School August 2, 2007 Thomas Liu, Ph.D. UCSD Center for Functional MRI Why optimize? Scans are expensive. Subjects can be difficult to

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS Page 1 MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level

More information

Microeconometria Day # 5 L. Cembalo. Regressione con due variabili e ipotesi dell OLS

Microeconometria Day # 5 L. Cembalo. Regressione con due variabili e ipotesi dell OLS Microeconometria Day # 5 L. Cembalo Regressione con due variabili e ipotesi dell OLS Multiple regression model Classical hypothesis of a regression model: Assumption 1: Linear regression model.the regression

More information

Lecture 4: Testing Stuff

Lecture 4: Testing Stuff Lecture 4: esting Stuff. esting Hypotheses usually has three steps a. First specify a Null Hypothesis, usually denoted, which describes a model of H 0 interest. Usually, we express H 0 as a restricted

More information

1. The Multivariate Classical Linear Regression Model

1. The Multivariate Classical Linear Regression Model Business School, Brunel University MSc. EC550/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 08956584) Lecture Notes 5. The

More information

Empirical Economic Research, Part II

Empirical Economic Research, Part II Based on the text book by Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 7, 2011 Outline Introduction

More information

Tests about a population mean

Tests about a population mean October 2 nd, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

The General Linear Model in Functional MRI

The General Linear Model in Functional MRI The General Linear Model in Functional MRI Henrik BW Larsson Functional Imaging Unit, Glostrup Hospital University of Copenhagen Part I 1 2 Preface The General Linear Model (GLM) or multiple regression

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Hypothesis testing:power, test statistic CMS:

Hypothesis testing:power, test statistic CMS: Hypothesis testing:power, test statistic The more sensitive the test, the better it can discriminate between the null and the alternative hypothesis, quantitatively, maximal power In order to achieve this

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 3 Jakub Mućk Econometrics of Panel Data Meeting # 3 1 / 21 Outline 1 Fixed or Random Hausman Test 2 Between Estimator 3 Coefficient of determination (R 2

More information

The OLS Estimation of a basic gravity model. Dr. Selim Raihan Executive Director, SANEM Professor, Department of Economics, University of Dhaka

The OLS Estimation of a basic gravity model. Dr. Selim Raihan Executive Director, SANEM Professor, Department of Economics, University of Dhaka The OLS Estimation of a basic gravity model Dr. Selim Raihan Executive Director, SANEM Professor, Department of Economics, University of Dhaka Contents I. Regression Analysis II. Ordinary Least Square

More information

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T,

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T, Regression Analysis The multiple linear regression model with k explanatory variables assumes that the tth observation of the dependent or endogenous variable y t is described by the linear relationship

More information

Biostatistics 4: Trends and Differences

Biostatistics 4: Trends and Differences Biostatistics 4: Trends and Differences Dr. Jessica Ketchum, PhD. email: McKinneyJL@vcu.edu Objectives 1) Know how to see the strength, direction, and linearity of relationships in a scatter plot 2) Interpret

More information

Lecture 1: OLS derivations and inference

Lecture 1: OLS derivations and inference Lecture 1: OLS derivations and inference Econometric Methods Warsaw School of Economics (1) OLS 1 / 43 Outline 1 Introduction Course information Econometrics: a reminder Preliminary data exploration 2

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

The Simple Regression Model. Simple Regression Model 1

The Simple Regression Model. Simple Regression Model 1 The Simple Regression Model Simple Regression Model 1 Simple regression model: Objectives Given the model: - where y is earnings and x years of education - Or y is sales and x is spending in advertising

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Lecture notes in Generalized Linear Models

Lecture notes in Generalized Linear Models Lecture notes in Generalized Linear Models Germán Rodríguez Princeton University http://data.princeton.edu/wws509 August 19, 2013 This page is added by Håvard Rue 1 Chapter 2 Linear Models for Continuous

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Steps in Regression Analysis

Steps in Regression Analysis MGMG 522 : Session #2 Learning to Use Regression Analysis & The Classical Model (Ch. 3 & 4) 2-1 Steps in Regression Analysis 1. Review the literature and develop the theoretical model 2. Specify the model:

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Multiple Regression Analysis

Multiple Regression Analysis Chapter 4 Multiple Regression Analysis The simple linear regression covered in Chapter 2 can be generalized to include more than one variable. Multiple regression analysis is an extension of the simple

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

STK4900/ Lecture 3. Program

STK4900/ Lecture 3. Program STK4900/9900 - Lecture 3 Program 1. Multiple regression: Data structure and basic questions 2. The multiple linear regression model 3. Categorical predictors 4. Planned experiments and observational studies

More information

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1 Review - Interpreting the Regression If we estimate: It can be shown that: where ˆ1 r i coefficients β ˆ+ βˆ x+ βˆ ˆ= 0 1 1 2x2 y ˆβ n n 2 1 = rˆ i1yi rˆ i1 i= 1 i= 1 xˆ are the residuals obtained when

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Background to Statistics

Background to Statistics FACT SHEET Background to Statistics Introduction Statistics include a broad range of methods for manipulating, presenting and interpreting data. Professional scientists of all kinds need to be proficient

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Political Science 236 Hypothesis Testing: Review and Bootstrapping

Political Science 236 Hypothesis Testing: Review and Bootstrapping Political Science 236 Hypothesis Testing: Review and Bootstrapping Rocío Titiunik Fall 2007 1 Hypothesis Testing Definition 1.1 Hypothesis. A hypothesis is a statement about a population parameter The

More information

1st level analysis Basis functions, parametric modulation and correlated regressors

1st level analysis Basis functions, parametric modulation and correlated regressors 1st level analysis Basis functions, parametric modulation and correlated regressors 1 First Level Analysis Bold impulse response Temporal Basis Functions Parametric modulation Correlated regressors Blocked

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

the error term could vary over the observations, in ways that are related

the error term could vary over the observations, in ways that are related Heteroskedasticity We now consider the implications of relaxing the assumption that the conditional variance Var(u i x i ) = σ 2 is common to all observations i = 1,..., n In many applications, we may

More information

School of Mathematical Sciences. Question 1

School of Mathematical Sciences. Question 1 School of Mathematical Sciences MTH5120 Statistical Modelling I Practical 8 and Assignment 7 Solutions Question 1 Figure 1: The residual plots do not contradict the model assumptions of normality, constant

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Applied Health Economics (for B.Sc.)

Applied Health Economics (for B.Sc.) Applied Health Economics (for B.Sc.) Helmut Farbmacher Department of Economics University of Mannheim Autumn Semester 2017 Outlook 1 Linear models (OLS, Omitted variables, 2SLS) 2 Limited and qualitative

More information