Jean-Baptiste Poline

Size: px
Start display at page:

Download "Jean-Baptiste Poline"

Transcription

1 Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors

2 Outline Part I: Linear model and contrast: going through it again and going further Part II: Variance component and group analyses* * (shamelessly( stolen from Will Penny SPM course)

3 images Spatial filter Design matrix Adjusted data Your question: a contrast realignment & coregistration smoothing General Linear Model Linear fit statistical image Random Field Theory normalisation Anatomical Reference Statistical Map Uncorrected p-values Corrected p-values

4 Plan REPEAT: model and fitting the data with a Linear Model Make sure we understand the testing procedures : t-t and F-testsF But what do we test exactly? Examples almost real

5 One voxel = One test (t, F,...) amplitude General Linear Model fitting statistical image time Temporal series fmri voxel time course Statistical image (SPM)

6 Regression example = β 1 + β 2 + β 1 = 1 β 2 = 1 Fit the GLM voxel time series box-car reference function Mean value

7 Regression example = + + β 1 β 2 β 1 = 5 β 2 = 100 Fit the GLM voxel time series box-car reference function Mean value

8 revisited : matrix form = β β 2 Y = f(t) + + β 1 β 2 1 ε

9 Box car regression: design matrix data vector (voxel time series) design matrix parameters error vector α β 1 = + µ β 2 Y = X β + ε

10 Fact: model parameters depend on regressors scaling Q: When do I care? A: ONLY when comparing manually entered regressors (say you would like to compare two scores) What if two conditions A and B are not of the same duration before convolution HRF?

11 What if we believe that there are drifts?

12 Add more reference functions / covariates... Discrete cosine transform basis functions

13 design matrix data vector β 1 β 2 β 3 β 4 error vector = + Y = X β + ε

14 error vector design matrix β α 1 β µ 2 β 3 = β 4 β 5 + β 6 β 7 β 8 β 9 Y = X β + ε data vector design matrix parameters = the betas (here : 1 to 9)

15 Fitting the model = finding some estimate of the betas raw fmri time series adjusted for low Hz effects Raw data fitted signal fitted low frequencies fitted drift residuals How do we find the betas estimates? By minimizing the residual variance

16 Fitting the model = finding some estimate of the betas β 1 = β 2 β 5 β 6 + Y = X β + ε β 7... finding the betas = minimising the sum of square of the residuals Y X 2 = Σ i [ y i X i ] 2 when β are estimated: let s s call them b when ε is estimated : let s s call it e estimated SD of ε : let s s call it s

17 Take home... We put in our model regressors (or covariates) that represent how we think the signal is varying (of interest and of no interest alike) WHICH ONE TO INCLUDE? What if we have too many? Coefficients (= parameters) are estimated by minimizing the fluctuations, - variability variance of estimated noise the residuals. Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors, or conditions of different durations

18 Plan Make sure we all know about the estimation (fitting) part... Make sure we understand t and F tests But what do we test exactly? An example almost real

19 T test - one dimensional contrasts - SPM{t} c = b 1 b 2 b 3 b 4 b 5... A contrast = a weighted sum of parameters: c b b 1 > 0? Compute 1xb 1 + 0xb 2 + 0xb 3 + 0xb 4 + 0xb divide by estimated standard deviation of b 1 T = contrast of estimated parameters variance estimate T = c b s 2 c (X X) X) - c SPM{t}

20 From one time series to an image voxels Y: data = X * B beta??? images + E scans Var(E) = s 2 spm_resms c = T = c b s 2 c (X X) X) - c = spm_con??? images spm_t??? images

21 F-test : a reduced model H 0 : True model is X 0 H 0 : β 1 = 0 X 1 X 0 X 0 c = F ~ ( S 0 2 -S 2 ) / S 2 T values become F values. F = T 2 S 2 S 0 2 This (full) model? Or this one? Both activation and deactivations are tested. Voxel wise p-values are halved.

22 F-test : a reduced model or... Tests multiple linear hypotheses : Does X1 model anything? H 0 : True (reduced) model is X 0 X 0 X 1 X 0 additional variance accounted for by tested effects S 2 S 0 2 F = error variance estimate This (full) model? Or this one? F ~ ( S 0 2 -S 2 ) / S 2

23 F-test : a reduced model or... multi-dimensional contrasts? tests multiple linear hypotheses. Ex : does drift functions model anything? H 0 : True model is X 0 H 0 : β 3-9 = ( ) X 0 X 1 X c = This (full) model? Or this one?

24 Convolution model Design and contrast SPM(t) or SPM(F) Fitted and adjusted data

25 T and F test: take home... T tests are simple combinations of the betas; they are either positive or negative (b1 b2 is different from b2 b1) F tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler model, or F tests the sum of the squares of one or several combinations of o the betas in testing single contrast with an F test, for ex. b1 b2, the result will be the same as testing b2 b1. It will be exactly the square of the t-test, t test, testing for both positive and negative effects.

26 Plan Make sure we all know about the estimation (fitting) part... Make sure we understand t and F tests But what do we test exactly? Correlation between regressors An example almost real

27 «Additional variance» : Again No correlation between green red and yellow

28 Testing for the green correlated regressors, for example green: subject age yellow: subject score

29 Testing for the red correlated contrasts

30 Testing for the green Very correlated regressors? Dangerous!

31 Testing for the green and yellow If significant? Could be G or Y!

32 Testing for the green Completely correlated regressors? Impossible to test! (not estimable)

33 An example: : real Testing for first regressor: T max = 9.8

34 Including the movement parameters in the model Testing for first regressor: activation is gone!

35 Implicit or explicit ( ) decorrelation (or orthogonalisation) Y e Xb C2 Xb Space of X C2 C2 C1 L C1 C1 L C2 This generalises when testing several regressors (F tests) cf Andrade et al., NeuroImage, 1999 L C2 : L C1 : test of C2 in the implicit model test of C1 in the explicit model

36 Correlation between regressors: take home... Do we care about correlation in the design? Yes, always Start with the experimental design : conditions should be as uncorrelated as possible use F tests to test for the overall variance explained by several (correlated) regressors

37 Plan Make sure we all know about the estimation (fitting) part... Make sure we understand t and F tests But what do we test exactly? Correlation between regressors An example almost real

38 A real example (almost!) Experimental Design Design Matrix Factorial design with 2 factors : modality and category 2 levels for modality (eg Visual/Auditory) 3 levels for category (eg 3 categories of words) V A C1 C2 C3 C1 C2 C3 V A C 1 C 2 C 3

39 Asking ourselves some questions... V A C 1 C 2 C 3 Test C1 > C2 : c = [ ] Test V > A : c = [ ] [ ] Test C1,C2,C3? (F) c = [ ] [ ] Test the interaction MxC? Design Matrix not orthogonal Many contrasts are non estimable Interactions MxC are not modelled

40 Modelling the interactions

41 Test C1 > C2 : c = [ ] C 1 C 1 C 2 C 2 C 3 C 3 Test V > A : c = [ ] V A V A V A Test the category effect : [ ] c = [ ] [ ] Test the interaction MxC : [ ] c = [ ] [ ] Design Matrix orthogonal All contrasts are estimable Interactions MxC modelled If no interaction...? Model is too big!

42 With a more flexible model C 1 C 1 C 2 C 2 C 3 C 3 V A V A V A Test C1 > C2? Test C1 different from C2? from c = [ ] to c = [ ] [ ] becomes an F test! What if we use only: c = [ ] OK only if the regressors coding for the delay are all equal

43 Toy example: take home... use F tests when - Test for >0 and <0 effects - Test for more than 2 levels in factorial designs - Conditions are modelled with more than one regressor Check post hoc

44 1 General Linear Model p 1 1 y = Xθ + ε θ y = X p + ε Error Covariance N N N C ε = λ k k Q k N: N: number number of of scans scans p: p: number number of of regressors Model is is specified by by Design matrix X Assumptions about εε

45 Estimation y = X θ + ε N 1 N p p 1 N ReML-algorithm C ε = λkq k k Maximise L = ln p(y λ) = ln p(y θ, λ) dθ L g λ dl g = dλ 2 d L J = 2 dλ λ = λ + J 1 g Weighted Least Squares θ = ( X C X ) X C y T 1 T T 1 e e Friston Fristonet et al. al. 2002, 2002, Neuroimage

46 Hierarchical model θ Hierarchical model θ y (1) ( n 1) = = = X X X (1) (2) ( n) θ θ M θ (1) (2) ( n) + ε + ε + ε (1) (2) ( n) Multiple variance components at at each level C ( i ) = ( i ) λ Q ( i ) ε k k k At At each level, distribution of of parameters is is given by by level above. What we we don t know: distribution of of parameters and variance parameters.

47 θ y Example: Two level model = () 1 () 1 ( 1) θ ( 1) ( 2 ) ( 2 ) ( 2 ) = X X θ + + ε ε y = (1) X 1 (1) X 2 ( 1) θ + ( 1 ) ( 1) ε θ = X ( 2) ( 2 ) θ + ε ( 2) (1) X 3 First level Second level

48 Estimation Hierarchical model θ y (1) = = X X (1) (2) θ θ M (1) (2) + ε + ε (1) (2) θ ( n 1) = X ( n) θ ( n) + ε ( n) Single-level model y (1) (1) (2) = ε + X ε + X... + X (1) ( n 1) ( n) X K K X (1) ( n) ( n) = Xθ + e ε θ +

49 Group analysis in practice Many 2-level models are just too big to to compute. And even if, if, it it takes a long time! Is Is there a fast approximation?

50 Summary Statistics approach First level Second level T Data Design Matrix Contrast Images Var( c α ) t = c ˆ T ˆ α ˆ αˆ1 2 σˆ1 SPM(t) αˆ2 2 σˆ 2 αˆ11 2 σˆ11 αˆ12 2 σˆ12 One-sample 2 nd nd level

51 Validity of approach The summary stats approach is is exact if if for for each session/subject: Within-session covariance the the same First-level design the the same All other cases: Summary stats approach seems to to be be robust against typical violations.

52 Auditory Data Summary statistics Hierarchical Model Friston Fristonet et al. al. (2004) (2004) Mixed Mixed effects effects and and fmri fmri studies, studies, Neuroimage Neuroimage

53 Multiple contrasts per subject Stimuli: Auditory Presentation (SOA = 4 secs) secs) of of words Motion Sound Visual Action jump click pink turn Subjects: Scanning: Question: (i) (i) control subjects fmri, scans per per subject, block design What regions are are affected by by the the semantic content of of the the words? U. U. Noppeney et et al. al.

54 ANOVA 1 st st level: 1.Motion 2.Sound 3.Visual 4.Action? =? = X? = 2 nd nd level: 2,1 3,1 4,1 3,2 4,2 4,3

55 ANOVA 1 st st level: Motion Sound Visual Action? =? = X? = 2 nd nd level: T c = V X

56 Summary Linear hierarchical models are are general enough for for typical multisubject imaging data (PET, fmri, EEG/MEG). Summary statistics are are robust approximation for for group analysis. Also accomodates multiple contrasts per subject.

57 Thank you for your attention!

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Mixed effects and Group Modeling for fmri data

Mixed effects and Group Modeling for fmri data Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19, 2010 1 Outline Mixed effects

More information

Contrasts and Classical Inference

Contrasts and Classical Inference Elsevier UK Chapter: Ch9-P3756 8-7-6 7:p.m. Page:6 Trim:7.5in 9.5in C H A P T E R 9 Contrasts and Classical Inference J. Poline, F. Kherif, C. Pallier and W. Penny INTRODUCTION The general linear model

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs Experimental Design Overview Rik Henson With thanks to: Karl Friston, Andrew Holmes 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs designs designs - and nonlinear interactions

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Optimization of Designs for fmri

Optimization of Designs for fmri Optimization of Designs for fmri UCLA Advanced Neuroimaging Summer School August 2, 2007 Thomas Liu, Ph.D. UCSD Center for Functional MRI Why optimize? Scans are expensive. Subjects can be difficult to

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design 心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心 fmri 教育講習課程 I Hands-on (2 nd level) Group Analysis to Factorial Design 黃從仁助理教授臺灣大學心理學系 trhuang@ntu.edu.tw Analysis So+ware h"ps://goo.gl/ctvqce Where are we? Where are

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs Event-related fmri Rik Henson With thanks to: Karl Friston, Oliver Josephs Overview 1. BOLD impulse response 2. General Linear Model 3. Temporal Basis Functions 4. Timing Issues 5. Design Optimisation

More information

Detecting fmri activation allowing for unknown latency of the hemodynamic response

Detecting fmri activation allowing for unknown latency of the hemodynamic response Detecting fmri activation allowing for unknown latency of the hemodynamic response K.J. Worsley McGill University J.E. Taylor Stanford University January 7, 006 Abstract Several authors have suggested

More information

1st level analysis Basis functions, parametric modulation and correlated regressors

1st level analysis Basis functions, parametric modulation and correlated regressors 1st level analysis Basis functions, parametric modulation and correlated regressors 1 First Level Analysis Bold impulse response Temporal Basis Functions Parametric modulation Correlated regressors Blocked

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

NeuroImage. The general linear model and fmri: Does love last forever? Jean-Baptiste Poline a,b,, Matthew Brett b. Review

NeuroImage. The general linear model and fmri: Does love last forever? Jean-Baptiste Poline a,b,, Matthew Brett b. Review NeuroImage (0) 8 880 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Review The general linear model and fmri: Does love last forever? Jean-Baptiste

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Unbalanced Designs & Quasi F-Ratios

Unbalanced Designs & Quasi F-Ratios Unbalanced Designs & Quasi F-Ratios ANOVA for unequal n s, pooled variances, & other useful tools Unequal nʼs Focus (so far) on Balanced Designs Equal n s in groups (CR-p and CRF-pq) Observation in every

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Taguchi Method and Robust Design: Tutorial and Guideline

Taguchi Method and Robust Design: Tutorial and Guideline Taguchi Method and Robust Design: Tutorial and Guideline CONTENT 1. Introduction 2. Microsoft Excel: graphing 3. Microsoft Excel: Regression 4. Microsoft Excel: Variance analysis 5. Robust Design: An Example

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2. General Linear Models (GLM) Multivariate General Linear Models (MGLM) September 11, 2009 Research Projects If you have your own

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

Heteroscedasticity 1

Heteroscedasticity 1 Heteroscedasticity 1 Pierre Nguimkeu BUEC 333 Summer 2011 1 Based on P. Lavergne, Lectures notes Outline Pure Versus Impure Heteroscedasticity Consequences and Detection Remedies Pure Heteroscedasticity

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y.

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. June 2nd 2011 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule p(m y) = p(y m)p(m)

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

Model-free Functional Data Analysis

Model-free Functional Data Analysis Model-free Functional Data Analysis MELODIC Multivariate Exploratory Linear Optimised Decomposition into Independent Components decomposes data into a set of statistically independent spatial component

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 An Introduction to Multilevel Models PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 Today s Class Concepts in Longitudinal Modeling Between-Person vs. +Within-Person

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Mixed-effects and fmri studies

Mixed-effects and fmri studies Mixed-effects and fmri studies Technical Note www.elsevier.com/locate/ynimg NeuroImage 24 (2005) 244 252 K.J. Friston, a K.E. Stephan, a, * T.E. Lund, b A. Morcom, c and S. Kiebel a a The Wellcome Department

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Dynamic Causal Models

Dynamic Causal Models Dynamic Causal Models V1 SPC Will Penny V1 SPC V5 V5 Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Wellcome Department of Imaging Neuroscience, ION, UCL, UK. Mathematics in

More information

The General Linear Model. How we re approaching the GLM. What you ll get out of this 8/11/16

The General Linear Model. How we re approaching the GLM. What you ll get out of this 8/11/16 8// The General Linear Model Monday, Lecture Jeanette Mumford University of Wisconsin - Madison How we re approaching the GLM Regression for behavioral data Without using matrices Understand least squares

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

General multilevel linear modeling for group analysis in FMRI

General multilevel linear modeling for group analysis in FMRI NeuroImage 0 (003) 105 1063 www.elsevier.com/locate/ynimg General multilevel linear modeling for group analysis in FMRI Christian F. Becmann, a,b, *,1 Mar Jeninson, a,1 and Stephen M. Smith a a Oxford

More information

Testing for Anomalous Periods in Time Series Data. Graham Elliott

Testing for Anomalous Periods in Time Series Data. Graham Elliott Testing for Anomalous Periods in Time Series Data Graham Elliott 1 Introduction The Motivating Problem There are reasons to expect that for a time series model that an anomalous period might occur where

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Statistical Techniques II EXST7015 Simple Linear Regression

Statistical Techniques II EXST7015 Simple Linear Regression Statistical Techniques II EXST7015 Simple Linear Regression 03a_SLR 1 Y - the dependent variable 35 30 25 The objective Given points plotted on two coordinates, Y and X, find the best line to fit the data.

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression)

8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression) psyc3010 lecture 7 analysis of covariance (ANCOVA) last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression) 1 announcements quiz 2 correlation and

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Statistical parametric mapping for event-related potentials (II): a hierarchical temporal model

Statistical parametric mapping for event-related potentials (II): a hierarchical temporal model Statistical parametric mapping for event-related potentials (II): a hierarchical temporal model Stefan J. Kiebel* and Karl J. Friston Functional Imaging Laboratory, Institute of Neurology, Wellcome Department

More information

Econ 2120: Section 2

Econ 2120: Section 2 Econ 2120: Section 2 Part I - Linear Predictor Loose Ends Ashesh Rambachan Fall 2018 Outline Big Picture Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted

More information

Revealing Interactions Among Brain Systems With Nonlinear PCA

Revealing Interactions Among Brain Systems With Nonlinear PCA Human Brain Mapping 8:92 97(1999) Revealing Interactions Among Brain Systems With Nonlinear PCA Karl Friston,* Jacquie Phillips, Dave Chawla, and Christian Büchel The Wellcome Department of Cognitive Neurology,

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science.

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science. Texts in Statistical Science Generalized Linear Mixed Models Modern Concepts, Methods and Applications Walter W. Stroup CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Introduction to Regression

Introduction to Regression Regression Introduction to Regression If two variables covary, we should be able to predict the value of one variable from another. Correlation only tells us how much two variables covary. In regression,

More information

Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy

Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy Theodore J. Huppert Neurophotonics 3(1), 010401 (Jan Mar 2016) COMMENTARY

More information

III. Inferential Tools

III. Inferential Tools III. Inferential Tools A. Introduction to Bat Echolocation Data (10.1.1) 1. Q: Do echolocating bats expend more enery than non-echolocating bats and birds, after accounting for mass? 2. Strategy: (i) Explore

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

EPSE 592: Design & Analysis of Experiments

EPSE 592: Design & Analysis of Experiments EPSE 592: Design & Analysis of Experiments Ed Kroc University of British Columbia ed.kroc@ubc.ca October 3 & 5, 2018 Ed Kroc (UBC) EPSE 592 October 3 & 5, 2018 1 / 41 Last Time One-way (one factor) fixed

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Scaling in Neurosciences: State-of-the-art

Scaling in Neurosciences: State-of-the-art Spatially regularized multifractal analysis for fmri Data Motivation Scaling in Neurosciences: State-of-the-art Motivation Multifractal Multifractal Princeton Experiment Princeton Experimen Van Gogh P.

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Orthogonal contrasts for a 2x2 factorial design Example p130

Orthogonal contrasts for a 2x2 factorial design Example p130 Week 9: Orthogonal comparisons for a 2x2 factorial design. The general two-factor factorial arrangement. Interaction and additivity. ANOVA summary table, tests, CIs. Planned/post-hoc comparisons for the

More information

Introduction to the regression problem. Luca Martino

Introduction to the regression problem. Luca Martino Introduction to the regression problem Luca Martino 2017 2018 1 / 30 Approximated outline of the course 1. Very basic introduction to regression 2. Gaussian Processes (GPs) and Relevant Vector Machines

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

Regularized Regression A Bayesian point of view

Regularized Regression A Bayesian point of view Regularized Regression A Bayesian point of view Vincent MICHEL Director : Gilles Celeux Supervisor : Bertrand Thirion Parietal Team, INRIA Saclay Ile-de-France LRI, Université Paris Sud CEA, DSV, I2BM,

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer LIMO EEG Citation for published version: Pernet, CR, Chauveau, N, Gaspar, C & Rousselet, GA 211, 'LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Data Extension & Forecasting Moving

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information